
Qwiic Single Relay Hookup Guide




Introduction
The Qwiic Single Relay is SparkFun’s easiest to use relay yet. The single relay can handle up to 5.5A at 240 VAC
for long periods of time. The Qwiic connectors and screw terminals also mean that no soldering is necessary.

SparkFun Qwiic Single Relay
 COM-15093

Product Showcase: SparkFun Qwiic Single and Quad Relay BoarProduct Showcase: SparkFun Qwiic Single and Quad Relay BoarProduct Showcase: SparkFun Qwiic Single and Quad Relay Boar………

https://www.sparkfun.com/
https://www.sparkfun.com/products/15093
https://www.sparkfun.com/products/15093
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/15093
https://www.youtube.com/watch?v=XL7Gu8KlnPI
https://www.youtube.com/channel/UCKPLvnWhN1Qo51IDDZsmq1g

⚡ Warning! The Qwiic single relay is great for switching loads like motors, batteries, solenoids, pumps, and
more! Keep in mind controlling high voltage (110/220VAC) requires certain precautions. A beginner can do it
but if you're unsure then please consider the pre-made IoT Power Relay. It's not I C but the IoT Power Relay
contains shielding to prevent accidental shock.

Required Materials

To get started, you’ll need a microcontroller to control everything. You may not need everything though depending
on what you have. Add it to your cart, read through the guide, and adjust the cart as necessary.

Now to get into the Qwiic ecosystem, the key will be one of the following Qwiic shields to match your preference of
microcontroller:

2

SparkFun RedBoard - Programmed with
Arduino
 DEV-13975

SparkFun ESP32 Thing
 DEV-13907

Particle Photon (Headers)
 WRL-13774

Raspberry Pi 3
 DEV-13825

https://www.sparkfun.com/products/14236
https://www.sparkfun.com/products/13975
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/13975
https://www.sparkfun.com/products/13907
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/13907
https://www.sparkfun.com/products/13774
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/13774
https://www.sparkfun.com/products/13825
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/13825

You will also need a Qwiic cable to connect the shield to your Qwiic Single Relay, choose a length that suits your
needs.

SparkFun Qwiic Shield for Arduino
 DEV-14352

SparkFun Qwiic HAT for Raspberry Pi
 DEV-14459

SparkFun Qwiic Shield for Photon
 DEV-14477

Qwiic Cable - 100mm
 PRT-14427

Qwiic Cable - 500mm
 PRT-14429

Qwiic Cable - 200mm Qwiic Cable - 50mm

https://www.sparkfun.com/products/14352
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14352
https://www.sparkfun.com/products/14459
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14459
https://www.sparkfun.com/products/14477
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14477
https://www.sparkfun.com/products/14427
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14427
https://www.sparkfun.com/products/14429
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14429
https://www.sparkfun.com/products/14428
https://www.sparkfun.com/products/14428
https://www.sparkfun.com/products/14426
https://www.sparkfun.com/products/14426

Tools

You will need a flush cutter and wire stripper to remove the sheath and insulation from a cable. A Phillips head
screwdriver will be required to connect the load's to a screw terminal.

Suggested Reading

If you aren’t familiar with the Qwiic system, we recommend reading here for an overview.

Qwiic Connect System

We would also recommend taking a look at the following tutorials if you aren’t familiar with them.

 PRT-14428  PRT-14426

Self-Adjusting Wire Strippers
 TOL-14872

Flush Cutters - Xcelite
 TOL-14782

SparkFun Mini Screwdriver
 TOL-09146

https://www.sparkfun.com/qwiic
https://www.sparkfun.com/qwiic
https://www.sparkfun.com/qwiic
https://learn.sparkfun.com/static/bubbles/
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14872
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14872
https://www.sparkfun.com/products/14782
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14782
https://www.sparkfun.com/products/9146
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/9146
https://learn.sparkfun.com/tutorials/serial-communication
https://learn.sparkfun.com/tutorials/i2c

Hardware Overview
First let’s check out some of the characteristics listed in the relay's datasheet that we’re dealing with, so we know
what to expect out of the board.

Characteristic Range

Operating Voltage 1.7V-3.6V

Supply Current 100mA

Coil Resistance 23.5Ω

I C Address 0x18 (Default), (Jumper changes to 0x19)

Max Current (Through Relay) 5.5A (240 VAC)

Pins

The following table lists all of the relay’s pins and their functionality.

Pin Description Direction

GND Ground In

Serial Communication
Asynchronous serial communication concepts: packets,
signal levels, baud rates, UARTs and more!

I2C
An introduction to I2C, one of the main embedded
communications protocols in use today.

Serial Terminal Basics
This tutorial will show you how to communicate with
your serial devices using a variety of terminal emulator
applications.

Qwiic Shield for Arduino & Photon Hookup
Guide
Get started with our Qwiic ecosystem with the Qwiic
shield for Arduino or Photon.

2

https://cdn.sparkfun.com/assets/5/e/e/d/f/3V_Relay_Datasheet_en-g5le.pdf
https://learn.sparkfun.com/tutorials/serial-communication
https://learn.sparkfun.com/tutorials/i2c
https://learn.sparkfun.com/tutorials/terminal-basics
https://learn.sparkfun.com/tutorials/qwiic-shield-for-arduino--photon-hookup-guide

3.3V Power In

SDA Data Bi-directional

SCL Clock In

NC Normally Closed Switch

NO Normally Open Switch

COM Switch Common Switch

Optional Features

The Qwiic Relay has pull up resistors attached to the I C bus; if multiple sensors are connected to the bus with the
pull-up resistors enabled, the parallel equivalent resistance will create too strong of a pull-up for the bus to operate
correctly. As a general rule of thumb, disable all but one pair of pull-up resistors if multiple devices are connected
to the bus. If you need to disconnect the pull up resistors they can be removed by cutting the traces on the
corresponding jumpers highlighted below.

Pull-up Jumper

The Power LED will light up when the board is powered. The Status LED will light up when the relay has been
triggered and the switch is closed, both are highlighted in the below image

Power LED

The onboard screw terminal should be used to connect your high-power load, it is highlighted below. The middle
COM pin should be hooked up to the Live wire (Usually black) coming from the wall, while NO or NC should be

connected to the Live wire on the device side of things.

2

https://cdn.sparkfun.com/assets/learn_tutorials/8/3/2/PU.png
https://cdn.sparkfun.com/assets/learn_tutorials/8/3/2/Qwiic_Relay_Hookup_Guide-LEDs.jpg

Screw Terminal

Hardware Assembly
If you haven’t yet assembled your Qwiic Shield, now would be the time to head on over to that tutorial. Depending
on the microcontroller and shield you’ve chosen, your assembly may be different, but here’s a handy link to the
Qwiic Shield for Arduino and Photon Hookup Guide to get you started!

QWIIC SHIELD FOR ARDUINO PHOTON HOOKUP GUIDE

With the shield assembled, SparkFun’s new Qwiic environment means that connecting the relay could not be
easier. Just plug one end of the Qwiic cable into the Qwiic Relay, the other into the Qwiic Shield and you’ll be
ready to upload a sketch and start turning things on and off. It seems like it’s too easy too use, but that’s why we
made it that way!

SparkFun RedBoard and Qwiic Shield with the Qwiic Relay attached

Note: Not sure about what color insulation wiring is used in you region? Check out the standard wire
insulation colors listed online for reference. If you are unsure about the standard wiring color in your region,
please consult a certified electrician to connect to the AC input voltage side.

⚡ Warning! Make sure the cable is not plugged into the wall as you cut into the wire in the following section.

You’ll also need to place the relay in line with the AC powered item you’re attempting to control. You’ll have to cut
your live AC line (usually black or red) and connect one end of the cut wire to COM and the other to NC or NO ,
depending on what you want the resting state of your device to be. If your AC device is going to be on for most of

https://cdn.sparkfun.com/assets/learn_tutorials/8/3/2/SCREW_UNCONNECTED.png
https://learn.sparkfun.com/tutorials/qwiic-shield-for-arduino--photon-hookup-guide
https://learn.sparkfun.com/tutorials/qwiic-shield-for-arduino--photon-hookup-guide
https://cdn.sparkfun.com/assets/learn_tutorials/8/3/2/Qwiic_Relay_Hookup_Guide-03__1_.jpg
https://en.wikipedia.org/wiki/Electrical_wiring

the time, and you occasionally want to turn it off, you should connect one end to COM and the other to NC .
Connect to NO if the device will be off for most of the time. Check out the picture below for a visual aid.

Relay Example Connection

⚡ Warning! Make sure that your wires connecting to the wall outlet are secure and are rated to handle the
current! Please be careful when handling the contacts when the cable is plugged into a wall outlet. Touching
the contacts while powered could result in injury.

Looking for information about safety and insulation? Check out the notes about Safety and Insulation from
our Beefcake Relay Control Kit.

⚡ Each relay takes just over 100 mA to power Daisy chaining these boards together on the same bus will
result in pretty large power spikes, you may need a separate 3.3V source depending on what else is included
in your project

Example Code

Note: This example assumes you are using the latest version of the Arduino IDE on your desktop. If this is
your first time using Arduino, please review our tutorial on installing the Arduino IDE.

The Qwiic Relay is pretty simple, so all of the functions to control it are simply contained in the examples, which
can be downloaded from the GitHub repo by clicking the button below.

QWIIC RELAY EXAMPLES (ZIP)

Example 1 - Basic Control

https://cdn.sparkfun.com/assets/learn_tutorials/8/3/2/connected.png
https://learn.sparkfun.com/tutorials/beefcake-relay-control-hookup-guide/saftey-and-insulation
https://learn.sparkfun.com/tutorials/installing-arduino-ide
https://github.com/sparkfun/Qwiic_Relay
https://github.com/sparkfun/Qwiic_Relay/archive/master.zip

Go ahead and unzip the folder to a directory of your choosing and open up Example1-Basic_control . In this
example, we’ll simply have the relay toggle on for 2 seconds, then off for two seconds. Let’s first look at the
available functions in our sketch. The first two, relayOn() and relayOff() , are pretty self explanatory, they
toggle the relay and return a message to the Serial monitor if no slave is found . The testForConnectivity()
function simply tests to see if there is a slave at the proper address (0x18). These functions can be found below.

void relayOn() {
 Wire.beginTransmission(qwiicRelayAddress);
 Wire.write(COMMAND_RELAY_ON);
 if (Wire.endTransmission() != 0) {
 Serial.println("Check Connections. No slave attached.");
 }
}

void relayOff() {
 Wire.beginTransmission(qwiicRelayAddress);
 Wire.write(COMMAND_RELAY_OFF);
 if (Wire.endTransmission() != 0) {
 Serial.println("Check Connections. No slave attached.");
 }
}

void testForConnectivity() {
 Wire.beginTransmission(qwiicRelayAddress);
 //check here for an ACK from the slave, if no ack don't allow change?
 if (Wire.endTransmission() != 0) {
 Serial.println("Check Connections. No slave attached.");
 while (1);
 }
}

Now that we have these functions declared (Arduino handles prototype declarations for us), we can use them in
our void setup() and void loop() . In our setup() function, we simply use the testForConnectivity()
function to do just that. We then move on the void loop() where we turn the relay on, wait 2 seconds, turn the
relay off, wait two seconds, and repeat. This code from Example 1 is shown below.

void setup() {
 Serial.begin(9600);
 Serial.println("Qwiic Relay Example 1 Basic Control");
 Wire.begin(); // join the I2C Bus

 testForConnectivity();

}

void loop() {
 relayOn();
 Serial.println("Relay is On.");
 delay(2000);
 relayOff();
 Serial.println("Relay is Off.");
 delay(2000);
}

Opening your serial monitor to a baud rate of 9600 should show something similar to the output below if everything
is connected properly. You should also be able to hear the relay clicking on and off. If things aren’t connected
properly, you’ll see the message Check connections. No slave attached. .

Example 1 Output

Example 2 - Change I C Address

To get started with the second example, open up Example2-Change_I2C_Address In this example, we simply
change the address to 0x19 . First, let’s take a look at the changeAddress() function, which checks to see if the
address is valid (Between 0x07 and 0x78) and changes the relay’s address to that. The function returns true if
successful.

2

https://learn.sparkfun.com/tutorials/terminal-basics/arduino-serial-monitor-windows-mac-linux
https://cdn.sparkfun.com/assets/learn_tutorials/8/3/2/EX1.PNG

boolean changeAddress(byte address) {
 Wire.beginTransmission(qwiicRelayAddress);
 //check here for an ACK from the slave
 if (Wire.endTransmission() != 0) {
 Serial.println("Check Connections. No slave found.");
 return (false);
 }

 //check if valid address.
 if (address < 0x07 || address > 0x78) {
 Serial.println("Invalid I2C address");
 return (false);
 }
 //valid address
 Wire.beginTransmission(qwiicRelayAddress);
 Wire.write(COMMAND_CHANGE_ADDRESS);
 qwiicRelayAddress = address;
 Wire.write(qwiicRelayAddress);
 Wire.endTransmission();
 return (true); //Success!
}

Now that we have these functions declared (Arduino handles prototype declarations for us), we can use them in
our void setup() and void loop() . In our setup() function, we change the address to 0x19 , check to see that
the address change was a success, and toggle the relay on and off on this new address. The sketch that handles
this is shown below.

#include <Wire.h>
#define COMMAND_RELAY_OFF 0x00
#define COMMAND_RELAY_ON 0x01
#define COMMAND_CHANGE_ADDRESS 0x03

volatile byte qwiicRelayAddress = 0x18; //Default Address

void setup() {
 Serial.begin(9600);
 Serial.println("Qwiic Relay Master Awake");
 Wire.begin(); // join the I2C Bus

 Wire.beginTransmission(qwiicRelayAddress); // transmit to device
 //check here for an ACK from the slave
 if (Wire.endTransmission() != 0) {
 Serial.println("Check Connections. Slave not found.");
 }
 else {
 Serial.println("Qwiic Relay found!");
 }

 boolean error = changeAddress(0x19); // Change the Relay's address to 0x19

 if (error != true) {
 Serial.println("!!!!! invalid address");
 }
 else {
 Serial.println("success");
 }
}

void loop() { //Toggle the Relay on the new address
 relayOn();
 delay(2000);
 relayOff();
 delay(2000);
}

// changeAddress() takes a 7 bit I2C Address
// and writes it to the Relay. This function
// checks to see if the address is between
// 0x07 and 0x78. If valid, the new address is
// saved to the Relay's EEPROM. If not valid
// address is not changed and is ignored.
// This function returns true if successful and
// false if unsuccessful.
boolean changeAddress(byte address) {
 //check if valid address.
 if (address < 0x07 || address > 0x78) {
 Serial.println("Invalid I2C address");
 return (false);
 }
 //valid address

 Wire.beginTransmission(qwiicRelayAddress);
 Wire.write(COMMAND_CHANGE_ADDRESS);
 qwiicRelayAddress = address;
 Wire.write(qwiicRelayAddress);
 if (Wire.endTransmission() != 0)
 {
 return false;
 }
 return true;
}

// RelayOn() turns on the relay at the SLAVE_ADDRESS
// Checks to see if a slave is connected and prints a
// message to the Serial Monitor if no slave found.
void relayOn() {
 Wire.beginTransmission(qwiicRelayAddress);
 Wire.write(COMMAND_RELAY_ON);
 if (Wire.endTransmission() != 0) {
 Serial.println("Check Connections. No slave attached");
 }
}

// RelayOff() turns off the relay at the qwiicRelayAddress
// Checks to see if a slave is connected and prints a
// message to the Serial Monitor if no slave found.
void relayOff() {
 Wire.beginTransmission(qwiicRelayAddress);
 Wire.write(COMMAND_RELAY_OFF);
 if (Wire.endTransmission() != 0) {
 Serial.println("Check Connections. No slave attached");
 }
}

Example 3 - I C Scanner

To get started with the third example, open up Example3-I2C_Scanner In this example, we simply scan the I C bus
for devices, useful if we’ve been changing around the address of our relay and have since forgotten what it was.
The example comes from Arduino, and the code can be shown below. We basically check for an ACK at each
address, and output that address when we get one back.

2

2

https://playground.arduino.cc/Main/I2cScanner

#include <Wire.h>

void setup()
{
 Wire.begin();

 Serial.begin(9600);
 while (!Serial); // Leonardo: wait for serial monitor
 Serial.println("\nI2C Scanner");
}

void loop()
{
 byte error, address;
 int nDevices;

 Serial.println("Scanning...");

 nDevices = 0;
 for (address = 1; address < 127; address++)
 {
 // The i2c_scanner uses the return value of
 // the Write.endTransmission to see if
 // a device did acknowledge to the address.
 Wire.beginTransmission(address);
 error = Wire.endTransmission();

 if (error == 0)
 {
 Serial.print("I2C device found at address 0x");
 if (address < 16)
 Serial.print("0");
 Serial.print(address, HEX);
 Serial.println(" !");

 nDevices++;
 }
 else if (error == 4)
 {
 Serial.print("Unknown error at address 0x");
 if (address < 16)
 Serial.print("0");
 Serial.println(address, HEX);
 }
 }
 if (nDevices == 0)
 Serial.println("No I2C devices found\n");
 else
 Serial.println("done\n");

 delay(5000); // wait 5 seconds for next scan
}

Opening your serial monitor to a baud rate of 9600 will show what you have on your I C bus and should look
something like the below image.

I C Scanner

Example 4 - Get Relay Status

The fourth example simply gets the current status of the relay. To get started with this example, open up
Example4-Get_Relay_Status . We simply request a byte from the COMMAND_STATUS register on the ATTiny85, and

output that byte, this function returns a 1 if the relay is on, 0 if it’s off, and a -1 if there’s an error.

byte getStatus() {
 Wire.beginTransmission(qwiicRelayAddress);
 Wire.write(COMMAND_STATUS); // command for status
 Wire.endTransmission(); // stop transmitting //this looks like it was essential.

 Wire.requestFrom(qwiicRelayAddress, 1); // request 1 bytes from slave device qwiicRelayAddr
ess

 while (Wire.available()) { // slave may send less than requested
 char c = Wire.read(); // receive a byte as character.
 if (c == 0x01) return 1;
 else {
 return 0;
 }
 }
}

Opening your serial monitor to a baud rate of 9600 will show you the current status of the relay.

Relay Status

2

2

https://learn.sparkfun.com/tutorials/terminal-basics/arduino-serial-monitor-windows-mac-linux
https://cdn.sparkfun.com/assets/learn_tutorials/8/3/2/Example3.PNG
https://learn.sparkfun.com/tutorials/terminal-basics/arduino-serial-monitor-windows-mac-linux
https://cdn.sparkfun.com/assets/learn_tutorials/8/3/2/EX4.PNG

Example 5 - Get Firmware Version

The Qwiic relay is controlled by an ATTiny85. SparkFun gives it some firmware to get it started, this final example
shows you how to check which firmware version your ATTiny85 is using. Go ahead and open up Example5-
Get_Firmware_Version to get started. Checking out the getFirmwareVersion() function, we see that it requests 2
bytes from the COMMAND_FIRMWARE_VERSION register (0x04) and returns them as a float. We simply call this function
in our setup() function to get the firmware version.

Opening your serial monitor to a baud rate of 9600 will show you the current firmware version, and should look
something like the below image.

Firmware Version

Resources and Going Further
Now that you’ve successfully got your Qwiic Single Relay up and running, it’s time to incorporate it into your own
project!

For more information, check out the resources below:

Schematic (PDF)
Eagle Files (ZIP)
Datasheet (PDF)
Default Firmware
Example Code
GitHub Repository
SFE Product Showcase

Need some inspiration for your next project? Check out some of these related tutorials using relays. Be sure to
check your current rating when handling the Qwiic Single Relay when browsing some of the other tutorials using
relays.

Photon Remote Water Level Sensor
Learn how to build a remote water level sensor for a
water storage tank and how to automate a pump based
off the readings!

Blynk Board Project Guide
A series of Blynk projects you can set up on the Blynk
Board without ever re-programming it.

https://learn.sparkfun.com/tutorials/terminal-basics/arduino-serial-monitor-windows-mac-linux
https://cdn.sparkfun.com/assets/learn_tutorials/8/3/2/EX5.PNG
https://cdn.sparkfun.com/assets/0/7/b/1/6/Qwiic_Single_Relay.pdf
https://cdn.sparkfun.com/assets/5/1/1/1/e/Qwiic_Single_Relay.zip
https://cdn.sparkfun.com/assets/5/e/e/d/f/3V_Relay_Datasheet_en-g5le.pdf
https://cdn.sparkfun.com/assets/1/2/d/4/b/Qwiic_Relay_Firmware.zip
https://cdn.sparkfun.com/assets/7/b/d/0/6/Qwiic_Relay_Examples.zip
https://github.com/sparkfun/Qwiic_Relay
https://www.youtube.com/watch?v=XL7Gu8KlnPI
https://learn.sparkfun.com/tutorials/photon-remote-water-level-sensor
https://learn.sparkfun.com/tutorials/blynk-board-project-guide
https://learn.sparkfun.com/tutorials/esp8266-powered-propane-poofer
https://learn.sparkfun.com/tutorials/blynk-board-bridge-widget-demo

ESP8266 Powered Propane Poofer
Learn how Nick Poole built a WiFi controlled fire-
cannon using the ESP8266 Thing Dev Board!

Blynk Board Bridge Widget Demo
A Blynk project that demonstrates how to use the
Bridge widget to get two (or more) Blynk Boards to
communicate.

Beefcake Relay Control Hookup Guide
This is a guide for assembling and basic use of the
Beefcake Relay Control board

How to Build a Remote Kill Switch
Learn how to build a wireless controller to kill power
when things go... sentient.

IoT Power Relay
Using the ESP32 to make a web-configured timed
relay.

Qwiic Quad Relay Hookup Guide
SparkFun’s Qwiic Quad Relay is a product designed for
switching not one but four high powered devices from
your Arduino or other low powered microcontroller
using I2C.

New!

https://learn.sparkfun.com/tutorials/esp8266-powered-propane-poofer
https://learn.sparkfun.com/tutorials/blynk-board-bridge-widget-demo
https://learn.sparkfun.com/tutorials/beefcake-relay-control-hookup-guide
https://learn.sparkfun.com/tutorials/how-to-build-a-remote-kill-switch
https://learn.sparkfun.com/tutorials/iot-power-relay
https://learn.sparkfun.com/tutorials/qwiic-quad-relay-hookup-guide

