
Tinker Kit Circuit Guide




Introduction

 Important! This tutorial is for the SparkFun Tinker Kit (KIT-18577).
If you are using one of the previous
versions of the Tinker Kit: KIT-14556 or KIT-13930, you'll want to refer to their respective guides:

KIT-14556 - Activity Guide for SparkFun Tinker Kit
KIT-13930 - Experiment Guide for SparkFun Tinker Kit

The SparkFun Tinker Kit is your starter tool kit for beginning with embedded electronics, robotics and citizen
science using the SparkFun RedBoard Qwiic without breaking the bank. This guide contains all the information
you will need to explore the 11 circuits of the Tinker Kit. At the center of this guide is one core philosophy -- that
anyone can (and should) play around with cutting-edge electronics in a fun and playful way.



SparkFun Tinker Kit

KIT-18577

https://www.sparkfun.com/
https://www.sparkfun.com/products/18577
https://www.sparkfun.com/products/14556
https://www.sparkfun.com/products/13930
https://learn.sparkfun.com/tutorials/activity-guide-for-sparkfun-tinker-kit
https://learn.sparkfun.com/tutorials/experiment-guide-for-the-sparkfun-tinker-kit
https://www.sparkfun.com/products/18577
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/18577

When you're done with this guide, you'll have the know-how to start creating your own projects and experiments.
From building robots and game controllers to data logging, the world will be your oyster. Now enough talking --
let's start tinkering!

Open Source!

At SparkFun, our engineers and educators have been improving this kit and coming up with new experiments for a
long time now. We would like to give attribution to Oomlout, since we originally started working off their Arduino Kit
material many years ago. The Oomlut version is licensed under the Creative Commons Attribution Share-Alike 3.0
Unported License.

The SparkFun Tinker Kit is licensed under the Creative Commons Attribution Share-Alike 4.0 International
License.

The SparkFun RedBoard Qwiic
The SparkFun RedBoard Qwiic is your development platform. At its roots, the RedBoard is essentially a small,
portable computer also known as a microcontroller. You can program it to accept inputs such as the push of a
button or a reading from a light sensor and interpret that information to control various outputs like blinking a light
like an LED or spinning an electric motor. That’s where the term “physical computing” comes in; this board can
take the world of electronics and relate it to the physical world in a real and tangible way.

The SparkFun RedBoard Qwiic is one of a multitude of development boards based on the ATmega328
microprocessor. It has 14 digital input/output pins (six of which can be pulse-width modulation outputs; also
referred to as PWM), six analog inputs, a 16MHz crystal oscillator, a USB connection, a power jack, a reset button
and a Qwiic connector for connecting other Qwiic devices. You’ll learn more about each of these features as you
progress through this guide.

Check out the guide below to learn more about the SparkFun RedBoard Qwiic.

If you'd like to learn more about the Qwiic System, we recommend reading here for an overview:

RedBoard Qwiic Hookup Guide
JANUARY 10, 2019
This tutorial covers the basic functionality of the RedBoard Qwiic. This tutorial
also covers how to get started blinking an LED and using the Qwiic system.

http://oomlout.com/
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://www.sparkfun.com/qwiic
https://www.sparkfun.com/qwiic
https://learn.sparkfun.com/tutorials/redboard-qwiic-hookup-guide

Understanding Breadboards
A breadboard is a circuit building platform that allows you to connect multiple components without using a
soldering iron.

All experiments in this guide use the included breadboard so if you have never seen or used a breadboard before,
we highly recommended you read the guide below that explains the breadboard's anatomy and how to use one.

Installing the Arduino IDE
The following steps provide a quick overview of getting started with the Arduino IDE and the RedBoard Qwiic USB
drivers. For more detailed, step-by-step instructions on installing and using the Arduino IDE on your computer,
please read through the tutorial below:

How to Use a Breadboard
MAY 14, 2013
Welcome to the wonderful world of breadboards. Here we will learn what a
breadboard is and how to use one to build your very first circuit.

https://www.sparkfun.com/qwiic
https://learn.sparkfun.com/tutorials/how-to-use-a-breadboard
https://learn.sparkfun.com/tutorials/installing-arduino-ide

Download the Arduino IDE

In order to get your microcontroller up and running, you'll need to download the newest version of the Arduino IDE
first (it's free and open source!).

DOWNLOAD THE ARDUINO IDE

This software, known as the Arduino IDE, allows you to program the board to do exactly what you want. It’s like a
word processor for writing code. If you have not already, go ahead and open Arduino.

Optional: Download the Tinker Kit Code Examples

If you're looking to plan ahead for the circuits in this guide or just prefer to not copy and paste them into Arduino
while following along, find them in the GitHub repository or click the button below to download a ZIP the Arduino
examples:

DOWNLOAD THE TINKER KIT CODE EXAMPLES

Unzip the download and either keep the Tinker Kit Code folder in your Downloads folder to open them as you go or
you can move them to your Arduino sketchbook folder to open them in the Arduino IDE. If you're not sure where
the sketchbook folder is, go to File > Preferences and look for the filepath titled "Sketchbook location". You can
also use this option to change the sketchbook location if you prefer.

Having trouble seeing the detail in this screenshot? Click on it for a larger view.

Install the CH340 USB Drivers

Heads up! Previous versions of the Tinker Kit featuring the SparkFun RedBoard Programmed with Arduino
used the FTDI, which is a different USB-to-serial converter. Both function the same but require different
drivers. If you look at the chip by the USB connector and you notice that it is the FTDI, make sure you follow
the directions to install the drivers for the FTDI.

If you are using the RedBoard Qwiic, you will need to install drivers for the CH340.

Installing Arduino IDE
MARCH 26, 2013
A step-by-step guide to installing and testing the Arduino software on Windows,
Mac, and Linux.

https://www.arduino.cc/en/Main/Software
https://github.com/sparkfun/SparkFun_Tinker_Kit_Code
https://github.com/sparkfun/SparkFun_Tinker_Kit_Code/archive/refs/heads/master.zip
https://cdn.sparkfun.com/assets/learn_tutorials/1/9/9/2/Tinker_Kit-Arduino_Preferences.png
https://learn.sparkfun.com/tutorials/how-to-install-ftdi-drivers
https://learn.sparkfun.com/tutorials/installing-arduino-ide

The drivers for the CH340C may be pre-installed on Windows, Mac, and Linux or may automatically install when
the RedBoard Qwiic is connected to your computer. However, there are a wide range of operating systems and
versions out there so we recommend installing the drivers to ensure that they work properly. Please go to How to
Install CH340 Drivers
for specific instructions on how to install the CH340C drivers with your RedBoard Qwiic.

Connect the RedBoard to Your Computer
Connect the RedBoard Qwiic to one of your computer's USB inputs using the included micro-USB cable.

Select Your Board: Arduino Uno

Before we can start jumping into the experiments, there are a couple adjustments we need to make. This step is
required to tell the Arduino IDE which of the many Arduino boards we have. Go up to the Tools menu then hover
over Board and select Arduino Uno.

How to Install CH340 Drivers
AUGUST 6, 2019
How to install CH340 drivers (if you need them) on Windows, Mac OS X, and
Linux.

https://cdn.sparkfun.com/assets/home_page_posts/2/9/7/9/15123-RedBoard-Qwiic-CH340_USB-to-Serial.png
https://www.sparkfun.com/ch340
https://learn.sparkfun.com/tutorials/choosing-an-arduino-for-your-project
https://learn.sparkfun.com/tutorials/how-to-install-ch340-drivers

Note: In case you were wondering, your SparkFun RedBoard Qwiic and the Arduino Uno are
interchangeable in the Arduino IDE but you won’t find the RedBoard Qwiic listed in Arduino by default.

Select a Serial Port

Next up we need to tell the Arduino IDE which of our computer's serial ports the microcontroller is connected to.
For this, again go up to the Tools menu, then hover over Port and select your RedBoard's serial port. If you're not
sure about which port is correct, open the Port menu without the RedBoard connected, take note of the ports
available, connect the RedBoard and see which port appears. That new port is your RedBoard's port.

With that, you're ready to build your first circuit!

Circuit 1: Blink an LED
Light-Emitting Diodes, or LEDs (pronounced el-ee-dees), are small, powerful lights that are used in many different
applications. You can find LEDs in just about any source of light nowadays, from the bulbs lighting your home to
the tiny status lights flashing on your home electronics. Blinking an LED is the classic starting point for learning
how to program embedded electronics. It's the "Hello, World!" of microcontrollers.

In this circuit, you'll write code that makes an LED flash on and off. This will teach you how to build a circuit, write a
short program and upload that program to your RedBoard.

https://cdn.sparkfun.com/assets/learn_tutorials/1/9/9/2/Tinker_Kit-Arduino_Board_Selection.png
https://cdn.sparkfun.com/assets/learn_tutorials/1/9/9/2/Tinker_Kit-Arduino_Port_Selection.png
https://en.wikipedia.org/wiki/%22Hello,_World!%22_program

Parts Needed

This circuit requires the following parts:

1x Breadboard
1x SparkFun RedBoard Qwiic
1x Red LED
1x 330Ω Resistor
2x Jumper Wires

Didn't Get the Tinker Kit?

If you are conducting this experiment and didn't get the Tinker Kit, we suggest using these parts:

SparkFun RedBoard Qwiic

DEV-15123

Breadboard - Self-Adhesive (White)

PRT-12002

LED - Assorted (20 pack)

COM-12062

Jumper Wires Standard 7" M/M - 30 AWG (30
Pack)

PRT-11026

https://cdn.sparkfun.com/assets/learn_tutorials/1/9/9/2/Tinker_Kit_Circuit1.jpg
https://www.sparkfun.com/products/15123
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/15123
https://www.sparkfun.com/products/12002
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/12002
https://www.sparkfun.com/products/12062
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/12062
https://www.sparkfun.com/products/11026
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/11026

New Components and Concepts: Each circuit introduces new components or parts used in the circuit as
well as a few new concepts that help you understand what your circuit and code does and why.

New Components
LED (Light Emitting Diode)

Light-Emitting Diodes (LEDs) are small lights made from a silicon diode. They come in different colors,
brightnesses and sizes. LEDs have a positive (+) leg and a negative (-) leg, and they only let electricity flow
through them in one direction. LEDs can also burn out if too much electricity flows through them, so you should
always use a resistor to limit the current when you wire an LED into a circuit.

Resistors

Resistors create a resistance to limit the flow of electricity in a circuit. You can use them to protect sensitive
components like LEDs. The strength of a resistor (measured in ohms) is marked on the body of the resistor using
small colored bands. Each color stands for a number, which you can look up using a resistor chart.

Resistor 330 Ohm 1/4 Watt PTH - 20 pack
(Thick Leads)

PRT-14490

https://learn.sparkfun.com/tutorials/light-emitting-diodes-leds
https://cdn.sparkfun.com/assets/1/6/5/a/4/51f1d3a2ce395fd720000008.jpg
https://learn.sparkfun.com/tutorials/resistors/
https://learn.sparkfun.com/tutorials/resistors/decoding-resistor-markings
https://cdn.sparkfun.com/assets/6/9/c/4/3/515dcac7ce395f7259000000.png
https://www.sparkfun.com/products/14490
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14490

New Concepts
Polarity

Many electronics components have polarity, meaning electricity only flows through them in one direction.
Components like resistors do not have polarity; electricity flows through them in either direction. LEDs are
polarized and only work when electricity flows through them in one direction.

Ohm's Law

Ohm's law describes the relationship between the three fundamental elements of electricity: voltage, resistance
and current. The following equation represents their relationship:

Where

V = Voltage in volts
I = Current in amps
R = Resistance in ohms (Ω)

Use this equation to calculate which resistor values are suitable to sufficiently limit the current flowing to the LED
so that it does not get too hot and burn out.

Digital Output

When working with microcontrollers such as the RedBoard Qwiic, each has a variety of pins you can connect to
electronic components. Knowing which pins perform which functions is important when building your circuit. This
circuit uses what is known as a digital output. The RedBoard Qwiic has 14 pins that work as digital outputs.
Digital pins only have two states: ON or OFF. These two states can also be thought of as HIGH/LOW or
TRUE/FALSE, respectively. When an LED is connected to one of these pins, the pin can only perform two jobs:
turning the LED on and turning the LED off. We'll explore the other pins and their functions in later circuits.

The 14 digital pins highlighted.

Hardware Hookup

Take some time familiarizing yourself with each of the components used in each circuit before assembling the
parts.

Polarized
Components

Pay special attention to the component’s markings indicating how to place it on the breadboard.
Polarized components can only be connected to a circuit in one direction.



https://learn.sparkfun.com/tutorials/polarity
https://learn.sparkfun.com/tutorials/voltage-current-resistance-and-ohms-law/ohms-law
https://learn.sparkfun.com/tutorials/what-is-electricity
https://cdn.sparkfun.com/assets/a/5/0/2/6/5113d140ce395f777e000000.gif
https://www.arduino.cc/en/Tutorial/DigitalPins
https://cdn.sparkfun.com/assets/learn_tutorials/1/9/9/2/RedBoard-DigitalPins.jpg

Pay close attention to the LED. It is polarized. The negative side of the LED is the short leg, marked with a
flat edge.

Components like resistors need their legs bent into 90° angles in order to correctly fit the breadboard sockets.

Ready to start hooking everything up? Check out the circuit diagram and hookup table below to see how
everything connects.

Circuit Diagram

Circuit Diagrams: SparkFun uses a program called Fritzing to draw the circuit diagrams you see throughout
this guide. Fritzing allows us to create diagrams that make it easier for you to see how your circuit should be
built.

https://cdn.sparkfun.com/assets/learn_tutorials/2/7/5/LED_drawing_01.png
https://cdn.sparkfun.com/assets/learn_tutorials/2/7/5/resistor_bent_legs_drawing.png
http://fritzing.org/home/

Having a hard time seeing the circuit? Click on the image for a closer look.

Hookup Table

Hookup Tables: Many electronics beginners find it helps to have a coordinate system when building their
circuits. For each circuit, you'll find a hookup table that lists the coordinates of each component and where it
connects to the RedBoard, the breadboard, or both. The breadboard has a letter/number coordinate system,
just like the game Battleship.

Component RedBoard Qwiic Breadboard Breadboard

LED A1 LED (-) A2 LED (+)

330Ω Resistor

(orange, orange, brown)

E2 F2

Jumper Wire GND E1

Jumper Wire Digital Pin 13 J2

In the table, polarized components are shown with a warning triangle and the whole row highlighted yellow.

Open Your First Sketch

Open the Arduino IDE software on your computer if it's not already open. If you previously downloaded and moved
the Tinker Kit Code into your Arduino sketchbook folder, open the Circuit 1 example by navigating to File >
Sketchbook > SparkFun Tinker Kit Code > Circuit 1 Blink.



https://cdn.sparkfun.com/assets/learn_tutorials/1/9/9/2/Tinker_Kit_Circuit1-Fritzing.jpg
https://learn.sparkfun.com/tutorials/polarity

Alternatively, you can copy and paste the following code into a blank sketch in Arduino. Hit upload, and watch what
happens!

/*

SparkFun Tinker Kit

Circuit 1: Blink an LED

Turns an LED connected to pin 13 on and off. Repeats forever.

This sketch was written by SparkFun Electronics, with lots of help from the Arduino community.

This code is completely free for any use.

View circuit diagram and instructions at: https://learn.sparkfun.com/tutorials/activity-guide-fo
r-sparkfun-tinker-kit/

Download code at: https://github.com/sparkfun/SparkFun_Tinker_Kit_Code

*/

void setup() {

pinMode(13, OUTPUT); // Set pin 13 to output

}

void loop() {

digitalWrite(13, HIGH); // Turn on the LED

delay(2000); // Wait for two seconds

digitalWrite(13, LOW); // Turn off the LED

delay(2000); // Wait for two seconds

}

What You Should See

The LED will turn on for two seconds then off for two seconds repeatedly. If it doesn't, make sure you have
assembled the circuit correctly and verified and uploaded the code to your board, or see the Troubleshooting tips
at the end of this section.

https://cdn.sparkfun.com/assets/learn_tutorials/1/9/9/2/Tinker_Kit-Arduino_Open_Sketchbook.png

Program Overview

1. Turn the LED on by sending power to Pin 13.
2. Wait 2 seconds (2000 milliseconds).
3. Turn the LED off by cutting power to Pin 13.
4. Wait 2 seconds (2000 milliseconds).
5. Repeat.

One of the best ways to understand the code you just uploaded is to change something and see how it affects the
behavior of your circuit. For this first circuit, try changing the number found in these lines of code:

`delay(2000);`

What happens if you change both to 100 ? What happens if you change both to 5000 ? What happens if you
change just one delay and not the other?

Onboard LED PIN 13: You may have noticed a second, smaller LED blinking in unison with the LED in your
breadboard circuit. This is known as the onboard LED, and you can find one on almost any Arduino or
Arduino-compatible board including the RedBoard. In most cases, this LED is connected to digital pin 13
(D13), which is the same pin used in this circuit. This LED is useful for troubleshooting, as you can always
upload the Blink sketch to see if that LED lights up. If so, you know your board is functioning properly. If you
do not want this LED to blink with other LEDs in your circuits, simply use any of the other 12 digital pins (D0-
D12).

Code to Note

Code to Note: The sketches that accompany each circuit introduce new programming techniques and
concepts as you progress through the guide. The Code to Note section highlights specific lines of code from
the sketch and explains them in further detail.

https://cdn.sparkfun.com/assets/learn_tutorials/1/9/9/2/Tinker_Kit_Circuit1-Demo.gif
https://cdn.sparkfun.com/assets/learn_tutorials/1/9/9/2/RedBoard-OnBoardLED.jpg

Code Description

Setup and Loop:

void setup(){code
to run once} & void
loop(){code to run
forever}

Every Arduino program needs these two functions. Code that goes in between the
curly brackets of setup() runs once, then the code in between the loop() curly
brackets runs over and over until the RedBoard is reset or powered off.

Input or Output?:

pinMode(13,
OUTPUT);

Before you can use one of the digital pins, you need to tell the RedBoard whether it is
an INPUT or OUTPUT. We use a built-in "function" called pinMode() to make pin 13 a
digital output. You'll learn more about digital inputs in the digital trumpet circuit.

Digital Output:

digitalWrite(13,
HIGH);

When you're using a pin as an OUTPUT, you can command it to be HIGH (output 5
volts) or LOW (output 0 volts).

Delay:

delay(time in
milliseconds);

Causes the program to wait on this line of code for the amount of time in between the
brackets. After the time has passed, the program will continue to the next line of code.

Comments:

//This is a
comment

Comments are a great way to leave notes in your code explaining why you wrote it the
way you did. You'll find many comments in the examples that further explain what the
code is doing and why. Comments can be single line using // , or they can be multi-
line using /* */ .

Coding Challenges

Coding Challenges: The Coding Challenges section is where you can find suggestions for changes to the
circuit or code that will make the circuit more challenging. If you feel underwhelmed by the tasks in each
circuit, visit the Coding Challenges section to push yourself to the next level.

Challenge Description

Persistence
of Vision

Computer screens, movies and the lights in your house all flicker so quickly that they appear to
be on all of the time but are actually blinking faster than the human eye can detect. See how
much you can decrease the delay time in your program before the light appears to be on all the
time but is still blinking.

Morse
Code

Try changing the delays and adding more digitalWrite() commands to make your program
blink a message in Morse code.

Troubleshooting

Troubleshooting: Last, each circuit has a Troubleshooting section with helpful tips and tricks to aid you in
any problems you encounter along the way.

Problem Solution

I get an
error
when
uploading
my code

The most likely cause is that you have the wrong board selected in the Arduino IDE. Make sure
you have selected Tools > Board > Arduino Uno.

I still get
an error
when
uploading
my code

If you're sure you have the correct Board selected but you still can't upload, check that you have
selected the correct Serial Port. You can change this in Tools > Serial Port > your_serial_port.

Which
Serial
Port is
the right
one?

Depending on how many devices you have plugged into your computer, you may have several
active Serial Ports. Make sure you are selecting the correct one. A simple way to determine this is
to look at your list of Serial Ports. Unplug your RedBoard from your computer. Look at the list
again. Whichever Serial Port has disappeared from the list is the one you want to select once you
plug your board back in to your computer.

My code
uploads,
but my
LED
won’t turn
on

LEDs will only work in one direction. Try taking it out of your breadboard, turning it 180 degrees,
and reinserting it.

Still not
working?

Jumper wires unfortunately can go "bad" from getting bent too much. The copper wire inside can
break, leaving an open connection in your circuit. If you are certain that your circuit is wired
correctly and that your code is error-free and uploaded but you are still encountering issues, try
replacing one or more of the jumper wires for the component that is not working.

Circuit 2: Potentiometer
Potentiometers (also known as “pots” or “knobs”) are one of the more basic inputs for electronics devices. By
tracking the position of the knob with your RedBoard, you can make volume controls, speed controls, angle
sensors and a ton of other useful inputs for your projects. In this circuit, you'll use a potentiometer as an input
device to control the speed at which your LED blinks.

https://cdn.sparkfun.com/assets/learn_tutorials/1/9/9/2/Tinker_Kit_Circuit2.jpg

Parts Needed

You will need the following parts:

1x Breadboard
1x SparkFun RedBoard
1x Red LED
1x 330Ω Resistor
7x Jumper Wires
1x Potentiometer

Didn't Get the Tinker Kit?

If you are conducting this experiment and didn't get the Tinker Kit, we suggest using these parts:

SparkFun RedBoard Qwiic

DEV-15123

Breadboard - Self-Adhesive (White)

PRT-12002

Trimpot 10K Ohm with Knob

COM-09806

Jumper Wires Standard 7" M/M - 30 AWG (30
Pack)

PRT-11026

Resistor 330 Ohm 1/4 Watt PTH - 20 pack
(Thick Leads)

LED - Basic Red 5mm

COM-09590

https://www.sparkfun.com/products/15123
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/15123
https://www.sparkfun.com/products/12002
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/12002
https://www.sparkfun.com/products/9806
https://www.sparkfun.com/products/9806
https://www.sparkfun.com/products/11026
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/11026
https://www.sparkfun.com/products/14490
https://www.sparkfun.com/products/14490
https://www.sparkfun.com/products/9590
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/9590

New Components
Potentiometer

A potentiometer (trimpot for short) is a variable resistor. When powered with 5V, the middle pin outputs a voltage
between 0V and 5V, depending on the position of the knob on the potentiometer. Internal to the trimpot is a single
resistor and a wiper, which cuts the resistor in two and moves to adjust the ratio between both halves. Externally,
there are usually three pins: two pins connect to each end of the resistor, while the third connects to the pot's
wiper.

New Concepts
Analog vs. Digital

Understanding the difference between analog and digital is a fundamental concept in electronics.

We live in an analog world. There is an infinite number of colors to paint an object (even if the difference is
indiscernible to our eye), an infinite number of tones we can hear, and an infinite number of smells we can smell.
The common theme among all of these analog signals is their infinite possibilities.

Digital signals deal in the realm of the discrete or finite, meaning there is a limited set of values they can be. The
LED from the previous circuit had only two states it could exist in, ON or OFF, when connected to a Digital Output.

Analog Inputs

So far, we've only dealt with outputs. The RedBoard also has inputs. Both inputs and outputs can be analog or
digital. Based on our definition of analog and digital above, that means an analog input can sense a wide range of
values versus a digital input, which can only sense two states.

You may have noticed some pins labeled Digital and some labeled Analog In on your RedBoard. There are only
six pins that function as analog inputs labeled A0--A5.


PRT-14490

https://learn.sparkfun.com/tutorials/resistors#types-of-resistors
https://cdn.sparkfun.com//assets/parts/3/8/2/3/09806-01.jpg
https://learn.sparkfun.com/tutorials/analog-vs-digital
https://www.arduino.cc/en/Tutorial/AnalogInput
https://www.arduino.cc/en/Tutorial/DigitalPins
https://learn.sparkfun.com/static/bubbles/

The six analog pins highlighted.

Voltage Divider

A voltage divider is a simple circuit that turns some voltage into a smaller voltage using two resistors. The following
is a schematic of the voltage divider circuit. Schematics are a universally agreed upon set of symbols that
engineers use to represent electric circuits.

A potentiometer is a variable resistor that can be used to create an adjustable voltage divider.

https://cdn.sparkfun.com/assets/learn_tutorials/1/9/9/2/RedBoard-AnalogPins.jpg
https://learn.sparkfun.com/tutorials/voltage-dividers
https://learn.sparkfun.com/tutorials/how-to-read-a-schematic
https://cdn.sparkfun.com/assets/6/2/d/1/2/515c8377ce395fa71d000000.png
https://cdn.sparkfun.com/assets/6/3/e/5/e/511ac8f5ce395f5846000000.png

A potentiometer schematic symbol where pins 1 and 3 are the resistor ends, and pin 2 connects to the wiper

If the outside pins connect to a voltage source (one to ground, the other to V), the output (V) at the middle pin
will mimic a voltage divider. Turn the trimpot all the way in one direction, and the voltage may be zero; turned to
the other side, the output voltage approaches the input. A wiper in the middle position means the output voltage
will be half of the input.

Voltage dividers will be covered in more detail in the next circuit.

Hardware Hookup

The potentiometer has three legs. Pay close attention into which pins you're inserting it on the breadboard, as they
will be hard to see once inserted.

Potentiometers are not polarized. You can attach either of the outside pins to 5V and the opposite to GND.
However, the values you get out of the trimpot will change based on which pin is 5V and which is GND.

Ready to start hooking everything up? Check out the circuit diagram and hookup table below to see how
everything is connected.

Circuit Diagram

Having a hard time seeing the circuit? Click on the image for a closer look.

Hookup Table

Component RedBoard Breadboard Breadboard Breadboard

Jumper Wire 5V 5V Rail (+)

Jumper Wire GND GND Rail (-)

LED A1 LED (-) A2 LED (+)

in out



https://cdn.sparkfun.com/assets/learn_tutorials/6/3/6/pot_pinout.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/1/9/9/2/Tinker_Kit_Circuit2-Fritzing.jpg

330Ω Resistor

(orange, orange, brown)

E2 F2

Jumper Wire E1 GND Rail (-)

Jumper Wire Digital Pin 13 J2

Potentiometer B25 B26 B27

Jumper Wire Analog Pin 0 (A0) E26

Jumper Wire E25 5V Rail (+)

Jumper Wire E27 GND Rail (-)

In the table, polarized components are shown with a warning triangle and the whole row highlighted yellow.

Open the Sketch

Open the sketch from your Arduino sketchbook or copy and paste the following code into the Arduino IDE. Hit
upload, and see what happens!

https://learn.sparkfun.com/tutorials/polarity

/*

SparkFun Tinker Kit

Circuit 2: Potentiometer

Changes how fast an LED connected to pin 13 blinks, based on a potentiometer connected to pin A0

This sketch was written by SparkFun Electronics, with lots of help from the Arduino community.

This code is completely free for any use.

View circuit diagram and instructions at: https://learn.sparkfun.com/tutorials/activity-guide-fo
r-sparkfun-tinker-kit/

Download code at: https://github.com/sparkfun/SparkFun_Tinker_Kit_Code

*/

int potPosition; //this variable will hold a value based on the position of the potentiome
ter

void setup()

{

 Serial.begin(9600); //start a serial connection with the computer

 pinMode(13, OUTPUT); //set pin 13 as an output that can be set to HIGH or LOW

}

void loop()

{

 //read the position of the pot

 potPosition = analogRead(A0); //set potPosition to a number between 0 and 1023 based on how
far the knob is turned

 Serial.println(potPosition); //print the value of potPosition in the serial monitor on the
computer

 //change the LED blink speed based on the trimpot value

 digitalWrite(13, HIGH); // Turn on the LED

 delay(potPosition); // delay for as many miliseconds as potPosition (0-1023)

 digitalWrite(13, LOW); // Turn off the LED

 delay(potPosition); // delay for as many miliseconds as potPosition (0-1023)

}

What You Should See

Try adjusting the potentiometer's position and you should see the LED blink faster or slower in accordance with it.
The delay between each flash will change based on the position of the knob. If it isn't working, make sure you
have assembled the circuit correctly and verified and uploaded the code to your board, or see the Troubleshooting
section.

Program Overview

1. Read the position of the potentiometer (from 0 to 1023) and store it in the variable potPosition .
2. Turn the LED on.
3. Wait from 0 to 1023 milliseconds, based on the position of the knob and the value of potPosition .
4. Turn the LED off.
5. Wait from 0 to 1023 milliseconds, based on the position of the knob and the value of potPosition .
6. Repeat.

The Serial Monitor: The Serial Monitor is one of the Arduino IDE's many great built-in tools. It can help you
understand the values that your program is trying to work with, and it can be a powerful debugging tool when
you run into issues where your code is not behaving the way you expected it to. This circuit introduces you to
the Serial Monitor by showing you how to print the values from your potentiometer to it. To see these values,
click the Serial Monitor button, found in the upper-right corner of the IDE in most recent versions. You can
also select Tools > Serial Monitor from the menu.

You should then see numeric values print out on the monitor. Turn the potentiometer, and you should see the
values change as well as the delay between each print.

If you are having trouble seeing the values, ensure that you have selected 9600 baud in the dropdown menu
and have auto scroll checked.

https://cdn.sparkfun.com/assets/learn_tutorials/1/9/9/2/Tinker_Kit_Circuit2-Demo.jpg
https://learn.sparkfun.com/tutorials/terminal-basics
https://cdn.sparkfun.com/assets/learn_tutorials/6/3/6/SerialMonitor.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/6/3/6/potPrint.jpg

Code to Note

Code Description

Integer Variables:

int potPosition;

A variable is a placeholder for values that may change in your code. You
must introduce, or "declare" variables before you use them. Here we're
declaring a variable called potPosition of type int (integer). We will
cover more types of variables in later circuits. Don't forget that variable
names are case-sensitive!

Serial Begin:

Serial.begin(9600);

Serial commands can be used to send and receive data from your
computer. This line of code tells the RedBoard that we want to "begin" that
communication with the computer, the same way we would say "Hi" to
initiate a conversation. Notice that the baud rate, 9600, is the same as the
one we selected in the monitor. This is the speed at which the two devices
communicate, and it must match on both sides.

Analog Input:

potPosition =
analogRead(A0);

We use the analogRead() function to read the value on an analog pin.
analogRead() takes one parameter, the analog pin you want to use, A0 in

this case, and returns a number between 0 (0 volts) and 1023 (5 volts),
which is then assigned to the variable potPosition.

Serial Print:

Serial.println(potPosition);

This is the line that actually prints the trimpot value to the monitor. It takes
the variable potPosition and prints whatever value it equals at that
moment in the loop() . The ln at the end of print tells the monitor to
print a new line at the end of each value; otherwise the values would all run
together on one line. Try removing the ln to see what happens.

Coding Challenges

Challenge Description

Changing
the
Range

Try multiplying, dividing or adding to your sensor reading so that you can change the range of the
delay in your code. For example, can you multiply the sensor reading so that the delay goes from
0–2046 instead of 0–1023?

Adding
More
LEDs

Add more LEDs to your circuit. Don't forget the current limiting resistor for each one. Try making
multiple LEDs blink at different rates by changing the range of each using multiplication or
division.

Troubleshooting

Problem Solution

The
potentiometer
always reads
as 0 or 1023

Make sure that your 5V, A0 and GND pins are properly connected to the three pins on your
potentiometer. It is easy to misalign a wire with the actual trimpot pin.

https://www.arduino.cc/en/Reference/Int

No values in
Serial Monitor

Make sure that you have selected the correct baud rate, 9600. Also ensure that you are on
the correct Serial Port. The same Serial Port you use when uploading code to your board is
the same Serial Port you use to print values to the Serial Monitor.

Circuit 3: Photoresistor
In the previous circuit, you got to use a potentiometer, which varies resistance based on the twisting of a knob. In
this circuit you’ll be using a photoresistor, which changes resistance based on how much light the sensor receives.
This circuit creates a simple night-light using the photoresistor that turns on when the room gets dark and turns off
when it is bright.

Parts Needed

Gather the following parts required for this circuit:

1x Breadboard
1x SparkFun RedBoard Qwiic
7x Jumper Wires
1x Red LED
1x 330Ω Resistor
1x Photoresistor
1x 10kΩ Resistor

Didn't Get the Tinker Kit?

If you are conducting this experiment and didn't get the Tinker Kit, we suggest using these parts:

SparkFun RedBoard Qwiic

DEV-15123

Breadboard - Self-Adhesive (White)

PRT-12002

https://cdn.sparkfun.com/assets/learn_tutorials/1/9/9/2/Tinker_Kit_Circuit3.jpg
https://www.sparkfun.com/products/15123
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/15123
https://www.sparkfun.com/products/12002
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/12002

New Components
Photoresistor

Photoresistors, or photocells, are light-sensitive, variable resistors. As more light shines on the sensor’s head, the
resistance between its two terminals decreases and vice versa. They’re an easy-to-use component in projects that
require ambient-light sensing.

LED - Assorted (20 pack)

COM-12062

Mini Photocell

SEN-09088

Jumper Wires Standard 7" M/M - 30 AWG (30
Pack)

PRT-11026

Resistor 10K Ohm 1/4 Watt PTH - 20 pack
(Thick Leads)

PRT-14491

Resistor 330 Ohm 1/4 Watt PTH - 20 pack
(Thick Leads)

PRT-14490

https://learn.sparkfun.com/tutorials/photocell-hookup-guide
https://www.sparkfun.com/products/12062
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/12062
https://www.sparkfun.com/products/9088
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/9088
https://www.sparkfun.com/products/11026
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/11026
https://www.sparkfun.com/products/14491
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14491
https://www.sparkfun.com/products/14490
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14490

New Concepts
Analog to Digital Conversion

We covered the difference between analog and digital signals in the last experiment but you may be wondering
how a digital thing like the RedBoard Qwiic can interpret analog signals. The answer to that is an Analog to Digital
Converter (or ADC). The six analog inputs (A0--A5) we highlighted in the last circuit all use an ADC. These pins
"sample" the analog signal and create a digital signal for the microcontroller to interpret. The "resolution" of this
signal is based on the resolution of the ADC. In the case of the RedBoard, that resolution is 10-bit. With a 10-bit
ADC, we get 2 ^ 10 = 1024 possible values, which is why the analog signal varies between 0 and 1023.

Voltage Divider Continued

Since the RedBoard can’t directly interpret resistance (rather, it reads voltage), we need to use a voltage divider to
use our photoresistor, a part that doesn't output voltage. The resistance of the photoresistor changes as it gets
darker or lighter which changes the amount of voltage that is read on the analog pin and "divides" the voltage, 5V
in this case. That divided voltage is then read on the analog to digital converter.

https://cdn.sparkfun.com/assets/learn_tutorials/6/3/6/photocell.jpg
https://learn.sparkfun.com/tutorials/analog-to-digital-conversion
https://learn.sparkfun.com/tutorials/voltage-dividers

Left: A regular voltage divider circuit. V will be a constant voltage. Right: A variable voltage divider circuit. V
will fluctuate as the resistance of the photoresistor changes.

The voltage divider equation assumes that you know three values of the above circuit: the input voltage (V), and
both resistor values (R and R). Given those values, we can use this equation to find the output voltage (V):

If R is a constant value (the resistor) and R fluctuates (the photoresistor), the amount of voltage measured on the
V pin changes.

Hardware Hookup

The photoresistor is not polarized. It can be inserted in either direction.

Ready to start hooking everything up? Check out the circuit diagram and hookup table below to see how
everything is connected.

Circuit Diagram

out out

in

1 2 out

1 2

out

https://cdn.sparkfun.com/assets/e/7/6/3/c/511968d9ce395f7c54000000.png

Having a hard time seeing the circuit? Click on the image for a closer look.

Hookup Table

Component RedBoard Breadboard Breadboard

Jumper Wire 5V 5V Rail (+)

Jumper Wire GND GND Rail (-)

LED A1 LED (-) A2 LED (+)

330Ω Resistor

(orange, orange, brown)

E2 F2

Jumper Wire E1 GND Rail (-)

Jumper Wire Digital Pin 13 J2

Photoresistor A26 B25

10kΩ Resistor

(brown, black, orange)

C26 D27

Jumper Wire Analog Pin 0 (A0) E26

Jumper Wire E25 5V Rail (+)

Jumper Wire E27 GND Rail (-)

In the table, polarized components are shown with a warning triangle and the whole row highlighted yellow.

Open the Sketch

Open the example code from your Arduino sketchbook or copy and paste the following code into the Arduino IDE.
Hit upload, and see what happens!



https://cdn.sparkfun.com/assets/learn_tutorials/1/9/9/2/Tinker_Kit_Circuit3-Fritzing.jpg
https://learn.sparkfun.com/tutorials/polarity

/*

SparkFun Tinker Kit

Circuit 3: Photoresistor

Use a photoresistor to monitor how bright a room is, and turn an LED on when it gets dark.

This sketch was written by SparkFun Electronics, with lots of help from the Arduino community.

This code is completely free for any use.

View circuit diagram and instructions at: https://learn.sparkfun.com/tutorials/activity-guide-fo
r-sparkfun-tinker-kit/

Download drawings and code at: https://github.com/sparkfun/SparkFun_Tinker_Kit_Code

*/

int photoresistor = 0; //this variable will hold a value based on the position of t
he knob

int threshold = 750; //if the photoresistor reading is below this value the light
will turn on

void setup()

{

 Serial.begin(9600); //start a serial connection with the computer

 pinMode(13, OUTPUT); //set pin 13 as an output that can be set to HIGH or LOW

}

void loop()

{

 //read the position of the knob

 photoresistor = analogRead(A0); //set photoresistor to a number between 0 and 1023 based on
 how far the knob is turned

 Serial.println(photoresistor); //print the value of photoresistor in the serial monitor on
 the computer

 //if the photoresistor value is below the threshold turn the light on, otherwise turn it off

 if (photoresistor < threshold){

 digitalWrite(13, HIGH); // Turn on the LED

 } else{

 digitalWrite(13, LOW); // Turn off the LED

 }

 delay(100); //short delay to make the printout easier to read

}

What You Should See

The program stores the light level in a variable, photoresistor . Then, using an if/else statement, the program
checks to see what it should do with the LED. If the variable is above the threshold (it’s bright), turn the LED off.
If
the variable is below the threshold (it’s dark), turn the LED on. You now have just built your own night-light!

https://www.arduino.cc/en/pmwiki.php?n=Reference/Else

Open the Serial Monitor in Arduino. The value of the photoresistor should be printed every so often. When the
photoresistor value drops below the threshold value set in the code, the LED should turn on (you can cover the
photoresistor with your finger to make the value drop).

Note: If the room you are in is very bright or dark, you may have to change the value of the “threshold”
variable in the code to make your night-light turn on and off. See the Troubleshooting section for instructions.

Program Overview

1. Store the light level in the variable photoresistor .
2. If the value of photoresistor is above the threshold (it’s bright), turn the LED off.
3. If the value of photoresistor is below the threshold (it’s dark), turn the LED on.

Code to Note

Code Description

If/else
Statements:

if(logic
statement) {

code to be run
if the logic
statement is
true}

else {

code to be run
if the logic
statement is
false
}

The if/else statement lets your code react to the world by running one set of code when the
logic statement in the round brackets is true and another set of code when the logic
statement is false. For example, this sketch uses an if statement to turn the LED on when it
is dark, and turn the LED off when it is light.

Logical
Operators:

(photoresistor
< threshold)

Programmers use logic statements to translate things that happen in the real world into
code. Logic statements use logical operators such as 'equal to' (==), 'greater than' (>), and
'less than' (<), to make comparisons. When the comparison is true (e.g., 4 < 5) then the
logic statement is true. When the comparison is false (e.g., 5 < 4) then the logic statement is
false. This example is asking whether the variable photoresistor is less than the variable
threshold.

https://cdn.sparkfun.com/assets/learn_tutorials/1/9/9/2/Tinker_Kit_Circuit3-Demonstration.jpg

Coding Challenges

Challenge Description

Response
Pattern

Right now your if statement turns the LED on when it gets dark, but you can also use the light
sensor like a no-touch button. Try using digitalWrite() and delay() to make the LED blink a
pattern when the light level drops, then calibrate the threshold variable in the code so that the
blink pattern triggers when you wave your hand over the sensor.

Replace
10KΩ
Resistor
with LED

Alter the circuit be replacing the 10KΩ resistor with an LED (the negative leg should connect to
GND). Now what happens when you place your finger over the photoresistor? This is a great way
to see Ohm's law in action by visualizing the change in resistance's affect on the current flowing
through the LED.

Troubleshooting

Problem Solution

The light
never
turns on
or
always
stays on

Start the Serial Monitor in Arduino. Look at the value that the photoresistor is reading in a bright
room (e.g., 915). Cover the photoresistor, or turn the lights off. Then look at the new value that the
photoresistor is reading (e.g., 550). Set the threshold in between these two numbers (e.g., 700) so
that the reading is above the threshold when the lights are on and below the threshold when the
lights are off.

Nothing
is
printing
in the
Serial
Monitor

Try unplugging your USB cable and plugging it back in. In the Arduino IDE, go to Tools > Port, and
make sure that you select the right port.

Circuit 4: RGB Night-Light
In this circuit, you'll take the night-light concept to the next level by adding an RGB LED, which is three differently
colored Light-Emitting Diodes (LEDs) built into one component. RGB stands for Red, Green and Blue, and these
three colors can be combined to create any color of the rainbow!

Parts Needed

https://cdn.sparkfun.com/assets/learn_tutorials/1/9/9/2/Tinker_Kit_Circuit4.jpg

You will need the following parts:

1x Breadboard
1x SparkFun RedBoard
12x Jumper Wires
1x LED - RGB Diffused Common Cathode
3x 330Ω Resistor
1x 10K Potentiometer
1x Photoresistor
1x 10kΩ Resistor

Didn't Get the Tinker Kit?

If you are conducting this experiment and didn't get the Tinker Kit, we suggest using these parts:

SparkFun RedBoard Qwiic

DEV-15123

Breadboard - Self-Adhesive (White)

PRT-12002

Trimpot 10K Ohm with Knob

COM-09806

Mini Photocell

SEN-09088

LED - RGB Diffused Common Cathode

COM-09264

Jumper Wires Standard 7" M/M - 30 AWG (30
Pack)

https://www.sparkfun.com/products/15123
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/15123
https://www.sparkfun.com/products/12002
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/12002
https://www.sparkfun.com/products/9806
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/9806
https://www.sparkfun.com/products/9088
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/9088
https://www.sparkfun.com/products/9264
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/9264
https://www.sparkfun.com/products/11026
https://www.sparkfun.com/products/11026

New Components
RGB LED

An RGB LED is actually three small LEDs --- one red, one green and one blue --- inside a normal LED housing.
The RGB LED included in this kit has all the internal LEDs share the same ground wire, so there are four legs in
total. To turn one color on, ensure ground is connected, then power one of the legs just as you would a regular
LED. If you turn on more than one color at a time, you will see the colors start to blend together to form a new
color.

New Concepts
Analog Output (Pulse-width Modulation)

You can use the digitalWrite() command to turn pins on the RedBoard on (5V) or off (0V), but what if you want
to output 2.5V? The RedBoard doesn't have an Analog Output, but it is really good at switching some digital pins
on and off fast enough to simulate an analog output. analogWrite() can output 2.5 volts by quickly switching a
pin on and off so that the pin is only on 50 percent of the time (50% of 5V is 2.5V). By changing the percent of time
that a pin is on, from 0 percent (always off) to 100 percent (always on), analogWrite() can output any voltage
between 0 and 5V. This is known as pulse-width modulation (or PWM). By using PWM, you can create many
different colors with the RGB LED.

Digital (PWM~): Only a few of the pins on the RedBoard have the circuitry needed to turn on and off fast
enough for PWM. These are pins 3, 5, 6, 9, 10 and 11. Each PWM pin is marked with a ~ on the board.
Remember, analogWrite() can only used on these pins.


PRT-11026

Resistor 10K Ohm 1/4 Watt PTH - 20 pack
(Thick Leads)

PRT-14491

Resistor 330 Ohm 1/4 Watt PTH - 20 pack
(Thick Leads)

PRT-14490

https://cdn.sparkfun.com/assets/learn_tutorials/6/3/6/RGB_LED_Pins.png
https://www.arduino.cc/en/Reference/AnalogWrite
https://learn.sparkfun.com/tutorials/pulse-width-modulation
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14491
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14491
https://www.sparkfun.com/products/14490
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14490

Creating Your Own Simple Functions

When programmers want to use a piece of code over and over again, they write a function. The simplest functions
are just chunks of code that you give a name to. When you want to run that code, you can “call” the function by
typing its name, instead of writing out all of the code. More complicated functions take and return pieces of
information from the program (we call these pieces of information parameters). In this circuit, you'll write functions
to turn the RGB LED different colors by just typing that color's name.

Hardware Hookup

Polarized
Components

Pay special attention to the component’s markings indicating how to place it on the breadboard.
Polarized components can only be connected to a circuit in one direction.

Just like a regular LED, an RGB LED is polarized and only allows electricity to flow in one direction. Pay close
attention to the flat edge and to the different length leads. Both are indicators to help orient the LED correctly.

Ready to start hooking everything up? Check out the circuit diagram and hookup table below to see how
everything is connected.

Circuit Diagram



https://cdn.sparkfun.com/assets/learn_tutorials/1/9/9/2/RedBoard-PWMPins.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/6/3/6/RGB_LED_Pins2.png

Having a hard time seeing the circuit? Click on the image for a closer look.

Hookup Table

Component RedBoard Breadboard Breadboard Breadboard Breadboard

RGB LED A5 (RED) A4 (GND) A3 (GREEN) A2 (BLUE)

330Ω Resistor

(orange, orange, brown)

E2 F2

330Ω Resistor

(orange, orange, brown)

E3 F3

330Ω Resistor

(orange, orange, brown)

E5 F5

Jumper Wire E4 GND Rail (-)

Jumper Wire Digital Pin 9 J5

Jumper Wire Digital Pin 10 J3

Jumper Wire Digital Pin 11 J2

Jumper Wire 5V 5V Rail (+)

Jumper Wire GND GND Rail (-)

Potentiometer B15 B16 B17

Jumper Wire Analog Pin 1 (A1) E16

Jumper Wire E15 5V Rail (+)

Jumper Wire E17 GND Rail (-)

Photoresistor A26 B25



https://cdn.sparkfun.com/assets/learn_tutorials/1/9/9/2/Tinker_Kit_Circuit4-Fritzing.jpg

10kΩ Resistor

(brown, black, orange)

C26 D27

Jumper Wire Analog Pin 0 (A0) E26

Jumper Wire E25 5V Rail (+)

Jumper Wire E27 GND Rail (-)

In the table, polarized components are shown with a warning triangle and the whole row highlighted yellow.

Open the Sketch

Open the example code from your Arduino sketchbook or copy and paste the following code into the Arduino IDE.
Hit upload, and see what happens!

https://learn.sparkfun.com/tutorials/polarity

/*

SparkFun Tinker Kit

Circuit 4: RGB Night-Light

Turns an RGB LED on or off based on the light level read by a photoresistor.

Change colors by turning the potentiometer.

This sketch was written by SparkFun Electronics, with lots of help from the Arduino community.

This code is completely free for any use.

View circuit diagram and instructions at: https://learn.sparkfun.com/tutorials/activity-guide-fo
r-sparkfun-tinker-kit/

Download drawings and code at: https://github.com/sparkfun/SparkFun_Tinker_Kit_Code

 */

int photoresistor; //variable for storing the photoresistor value

int potentiometer; //variable for storing the photoresistor value

int threshold = 700; //if the photoresistor reading is lower than this value the ligh
t wil turn on

//LEDs are connected to these pins

int RedPin = 9;

int GreenPin = 10;

int BluePin = 11;

void setup() {

 Serial.begin(9600); //start a serial connection with the computer

 //set the LED pins to output

 pinMode(RedPin,OUTPUT);

 pinMode(GreenPin,OUTPUT);

 pinMode(BluePin,OUTPUT);

}

void loop() {

 photoresistor = analogRead(A0); //read the value of the photoresistor

 potentiometer = analogRead(A1);

 Serial.print("Photoresistor value:");

 Serial.print(photoresistor); //print the photoresistor value to the serial monitor

 Serial.print(" Potentiometer value:");

 Serial.println(potentiometer); //print the photoresistor value to the serial monitor

 if(photoresistor < threshold){ //if it's dark (the photoresistor value is below the t
hreshold) turn the LED on

 //These nested if staments check for a variety of ranges and

 //call different functions based on the current potentiometer value.

 //Those functions are found at the bottom of the sketch.

 if(potentiometer > 0 && potentiometer <= 150)

 red();

 if(potentiometer > 150 && potentiometer <= 300)

 orange();

 if(potentiometer > 300 && potentiometer <= 450)

 yellow();

 if(potentiometer > 450 && potentiometer <= 600)

 green();

 if(potentiometer > 600 && potentiometer <= 750)

 cyan();

 if(potentiometer > 750 && potentiometer <= 900)

 blue();

 if(potentiometer > 900)

 magenta();

 }

 else { //if it isn't dark turn the LED off

 turnOff(); //call the turn off function

 }

 delay(100); //short delay so that the printout is easier to read

}

void red (){

 //set the LED pins to values that make red

 analogWrite(RedPin, 100);

 analogWrite(GreenPin, 0);

 analogWrite(BluePin, 0);

}

void orange (){

 //set the LED pins to values that make orange

 analogWrite(RedPin, 100);

 analogWrite(GreenPin, 50);

 analogWrite(BluePin, 0);

}

void yellow (){

 //set the LED pins to values that make yellow

 analogWrite(RedPin, 100);

 analogWrite(GreenPin, 100);

 analogWrite(BluePin, 0);

}

void green (){

 //set the LED pins to values that make green

 analogWrite(RedPin, 0);

 analogWrite(GreenPin, 100);

 analogWrite(BluePin, 0);

}

void cyan (){

 //set the LED pins to values that make cyan
 analogWrite(RedPin, 0);

 analogWrite(GreenPin, 100);

 analogWrite(BluePin, 100);

}

void blue (){

 //set the LED pins to values that make blue

 analogWrite(RedPin, 0);

 analogWrite(GreenPin, 0);

 analogWrite(BluePin, 100);

}

void magenta (){

 //set the LED pins to values that make magenta

 analogWrite(RedPin, 100);

 analogWrite(GreenPin, 0);

 analogWrite(BluePin, 100);

}

void turnOff (){

 //set all three LED pins to 0 or OFF

 analogWrite(RedPin, 0);

 analogWrite(GreenPin, 0);

 analogWrite(BluePin, 0);

}

What You Should See

This sketch is not dissimilar from the last. It reads the value from the photoresistor, compares it to a threshold
value, and turns the RGB LED on or off accordingly. This time, however, we've added a potentiometer back into
the circuit. When you twist the pot, you should see the color of the RGB LED change based on the pot's value.

Open the Serial Monitor. The value being read by the light sensor should be printed several times a second. When
you turn out the lights or cover the sensor, the LED will shine whatever color your programmed in your color
function. Next to the light value, you'll see the potentiometer value print out as well.

Note: If the room you are in is very bright or dark, you may have to change the value of the “threshold”
variable in the code to make your night-light turn on and off. See the Troubleshooting section for instructions.

Program Overview

1. Store the light level from pin A0 in the variable photoresistor .
2. Store the potentiometer value from pin A1 in the variable potentiometer .

https://cdn.sparkfun.com/assets/learn_tutorials/1/9/9/2/Tinker_Kit_Circuit4-Demo.jpg

3. If the light level variable is above the threshold , call the function that turns the RGB LED off.
4. If the light level variable is below the threshold , call one of the color functions to turn the RGB LED on.
5. If potentiometer is between 0 and 150, turn the RGB LED on red.
6. If potentiometer is between 151 and 300, turn the RGB LED on orange.
7. If potentiometer is between 301 and 450, turn the RGB LED on yellow.
8. If potentiometer is between 451 and 600, turn the RGB LED on green.
9. If potentiometer is between 601 and 750, turn the RGB LED on cyan.

10. If potentiometer is between 751 and 900, turn the RGB LED on blue.
11. If potentiometer is greater than 900, turn the RGB LED on magenta.

Code to Note

Code Description

Analog Output
(PWM):

analogWrite(RedPin,
100);

The analogWrite() function outputs a voltage between 0 and 5V on a pin. The
function breaks the range between 0 and 5V into 255 little steps. Note that we are not
turning the LED on to full brightness (255) in this code so that the night-light is not too
bright. Feel free to change these values and see what happens.

Nested if Statements:

if(logic statement)
{

if(logic statement)
{

code to be run if
the logic statement
is true}

if(logic statement)
{

code to be run if
the logic statement
is true}

}

A nested if statement is one or more if statements "nested" inside of another if
statement. If the parent if statement is true, then the code looks at each of the nested if
statements and executes any that are true. If the parent if statement is false, then none
of the nested statements will execute.

More Logical
Operators:

if(potentiometer >
0 && potentiometer
<= 150)

These if statements are checking for two conditions by using the AND (&&) operator.
In this line, the if statement will only be true if the value of the variable potentiometer is
greater than 0 AND if the value is less than or equal to 150. By using && , the program
allows the LED to have many color states.

Defining a Function:

void function_name
() {

code to run inside
function
}

This simple version of a function executes the code inside the curly brackets whenever
the name is written in the main program.

Calling a Function:

function_name();

Calls a function that you have created.
In a later circuit, you will learn how to make
more complicated functions that take data from the main program (these pieces of data
are called parameters).

Coding Challenges

Challenge Description

Add more
colors

You can create many more colors with the RGB LED. Use the analogWrite() function to blend
different values of red, green and blue together to make even more colors. You can divide the
potentiometer value up more and make more nested if statements so that you can have more
colors as you twist the knob.

Multi
color
blink

Try using delays and multiple color functions to have your RGB LED change between multiple
colors.

Change
the
threshold

Try setting your threshold variable by reading the value of a potentiometer with analogRead() . By
turning the potentiometer, you can then change the threshold level and adjust your night-light for
different rooms.

Fading
the LED

Try using a loop with the analogWrite() to get your LED to pulse gently or smoothly transition
between colors.

Troubleshooting

Problem Solution

The LED
never turns on
or off

Open the Serial Monitor in Arduino and make sure that your photoresistor is returning values
between 0 and 1023. Try covering the photoresistor; the values should change. If they do not
change, check the wiring of the photoresistor.

If your photoresistor is working correctly, make sure that your threshold variable sits in
between the value that the photoresistor reads when it is bright and the value that the
photoresistor reads when it is dark (e.g., bright = 850, dark = 600, threshold = 700).

My LED
doesn’t show
the colors that
I expect

Make sure that all three of the pins driving your RGB LED are set to OUTPUT , using the
pinMode() command in the setup section of the code. Then make sure that each LED is

wired properly.

Nothing is
printing in the
Serial Monitor

Try unplugging your USB cable and plugging it back in. In the Arduino IDE, go to Tools > Port,
and make sure that you select the right port.

Circuit 5: Buzzer
In this circuit, you'll use the RedBoard and a small buzzer to make music, and you'll learn how to program your
own songs using arrays.

Parts Needed

You will need the following parts:

1x Breadboard
1x SparkFun RedBoard
4x Jumper Wires
1x 10K Potentiometer
1x Buzzer

Didn't Get the Tinker Kit?

If you are conducting this experiment and didn't get the Tinker Kit, we suggest using these parts:

SparkFun RedBoard Qwiic

DEV-15123

Breadboard - Self-Adhesive (White)

PRT-12002

Trimpot 10K Ohm with Knob

COM-09806

Jumper Wires Standard 7" M/M - 30 AWG (30
Pack)

PRT-11026

https://cdn.sparkfun.com/assets/learn_tutorials/1/9/9/2/Tinker_Kit_Circuit5.jpg
https://www.sparkfun.com/products/15123
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/15123
https://www.sparkfun.com/products/12002
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/12002
https://www.sparkfun.com/products/9806
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/9806
https://www.sparkfun.com/products/11026
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/11026

New Components
Buzzer

The buzzer uses a small magnetic coil to vibrate a metal disc inside a plastic housing. By pulsing electricity
through the coil at different rates, different frequencies (pitches) of sound can be produced. Attaching a
potentiometer to the output allows you to limit the amount of current moving through the buzzer and lower its
volume.

New Concepts
Reset Button

The RedBoard has a built-in reset button. This button will reset the board and start the code over from the
beginning, running what is in setup() and then loop() .

Mini Speaker - PC Mount 12mm 2.048kHz

COM-07950

https://cdn.sparkfun.com/assets/learn_tutorials/6/3/6/Buzzer1.jpg
https://www.sparkfun.com/products/7950
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/7950

Tone Function

The tone function controls the pitch of the buzzer. This function is similar to PWM in that it generates a wave of a
certain frequency on the specified pin. The frequency and duration can both be passed to the tone() function
when calling it. To turn the tone off, you need to call noTone() or pass a duration of time for it to play and then
stop. Unlike PWM, tone() can be used on any digital pin.

Arrays

Arrays operate like variables but they can store multiple values. The simplest array is just a list. Imagine that you
want to store the frequency for each note of the C major scale. We could make seven variables and assign a
frequency to each one, or we could use an array and store all seven in the same array, as shown below. To refer to
a specific value in the array, an index number is used. Arrays are indexed from 0. For example, to call the first
element in the array, use array_name[0]; ; to call the second element, use array_name[1]; and so on.

Musical Note Frequency (Hz) Using Variables Using an Array

A 220 aFrequency frequency[0]

B 247 bFrequency frequency[1]

C 261 cFrequency frequency[2]

D 294 dFrequency frequency[3]

E 330 eFrequency frequency[4]

F 349 fFrequency frequency[5]

G 392 gFrequency frequency[6]

Hardware Hookup

Polarized
Components

Pay special attention to the component’s markings indicating how to place it on the breadboard.
Polarized components can only be connected to a circuit in one direction.



https://cdn.sparkfun.com/assets/learn_tutorials/6/3/6/reset2.jpg
https://www.arduino.cc/en/Reference/tone
https://www.arduino.cc/en/Reference/array

The buzzer is polarized. To see which leg is positive and which is negative, flip the buzzer over and look at the
markings underneath. Keep track of which pin is where, as they will be hard to see once inserted into the
breadboard. There is also text on the positive side of the buzzer, along with a tiny (+) symbol.

Volume Knob

All of the circuits with the buzzer make use of a potentiometer as a rudimentary volume knob. Notice that only two
of the potentiometer's legs are used in these circuits. In these instances, the potentiometer is acting as a variable
resistor, limiting the amount of current flowing to the speaker and thus affecting the volume as you turn the knob.
This is similar to the current-limiting resistor used to limit current to the LED in circuit 1 --- only this time the
resistance is variable.

Ready to start hooking everything up? Check out the circuit diagram and hookup table below to see how
everything is connected.

Circuit Diagram

https://cdn.sparkfun.com/assets/learn_tutorials/1/9/9/2/Tinker_Kit_Circuit5-Fritzing.jpg

Having a hard time seeing the circuit? Click on the image for a closer look.

Hookup Table

Component RedBoard Breadboard Breadboard Breadboard

Buzzer J1 (Buzzer +) J3 (Buzzer -)

Potentiometer B1 B2 B3

Jumper Wire GND GND Rail (-)

Jumper Wire Digital Pin 10 F1

Jumper Wire E2 GND Rail (-)

Jumper Wire E1 F3

In the table, polarized components are shown with a warning triangle and the whole row highlighted yellow.

Open the Sketch

Open the example code from your Arduino sketchbook or copy and paste the following code into the Arduino IDE.
Hit upload, and see what happens!



https://learn.sparkfun.com/tutorials/polarity

/*

SparkFun Tinker Kit

Circuit 5: Buzzer

Play notes using a buzzer connected to pin 10

This sketch was written by SparkFun Electronics, with lots of help from the Arduino community.

This code is completely free for any use.

View circuit diagram and instructions at: https://learn.sparkfun.com/tutorials/activity-guide-fo
r-sparkfun-tinker-kit/

Download drawings and code at: https://github.com/sparkfun/SparkFun_Tinker_Kit_Code/

*/

int speakerPin = 10; //the pin that buzzer is connected to

void setup()

{

 pinMode(speakerPin, OUTPUT); //set the output pin for the speaker

}

void loop()

{

 play('g', 2); //ha

 play('g', 1); //ppy

 play('a', 4); //birth

 play('g', 4); //day

 play('C', 4); //to

 play('b', 4); //you

 play(' ', 2); //pause for 2 beats

 play('g', 2); //ha

 play('g', 1); //ppy

 play('a', 4); //birth

 play('g', 4); //day

 play('D', 4); //to

 play('C', 4); //you

 play(' ', 2); //pause for 2 beats

 play('g', 2); //ha

 play('g', 1); //ppy

 play('G', 4); //birth

 play('E', 4); //day

 play('C', 4); //dear

 play('b', 4); //your

 play('a', 6); //name

 play(' ', 2); //pause for 2 beats

 play('F', 2); //ha

 play('F', 1); //ppy

 play('E', 4); //birth

 play('C', 4); //day

 play('D', 4); //to

 play('C', 6); //you

 while(true){} //get stuck in this loop forever so that the song only plays once

}

void play(char note, int beats)

{

 int numNotes = 14; // number of notes in our note and frequency array (there are 15 values, b
ut arrays start at 0)

 //Note: these notes are C major (there are no sharps or flats)

 //this array is used to look up the notes

 char notes[] = { 'c', 'd', 'e', 'f', 'g', 'a', 'b', 'C', 'D', 'E', 'F', 'G', 'A', 'B', ' '};

 //this array matches frequencies with each letter (e.g. the 4th note is 'f', the 4th frequency
is 175)

 int frequencies[] = {131, 147, 165, 175, 196, 220, 247, 262, 294, 330, 349, 392, 440, 494, 0};

 int currentFrequency = 0; //the frequency that we find when we look up a frequency in the a
rrays

 int beatLength = 150; //the length of one beat (changing this will speed up or slow down the
tempo of the song)

 //look up the frequency that corresponds to the note

 for (int i = 0; i < numNotes; i++) // check each value in notes from 0 to 14

 {

 if (notes[i] == note) // does the letter passed to the play function match the l
etter in the array?

 {

 currentFrequency = frequencies[i]; // Yes! Set the current frequency to match that note

 }

 }

 //play the frequency that matched our letter for the number of beats passed to the play functi
on

 tone(speakerPin, currentFrequency, beats * beatLength);

 delay(beats* beatLength); //wait for the length of the tone so that it has time to play

 delay(50); //a little delay between the notes makes the song sound more natur
al

}

/* CHART OF FREQUENCIES FOR NOTES IN C MAJOR

Note Frequency (Hz)

c 131

d 147

e 165

f 175

g 196

a 220

b 247

C 262

D 294

E 330

F 349

G 392

A 440

B 494

*/

What You Should See

When the program begins, a song will play from the buzzer once. To replay the song, press the reset button on the
RedBoard. Use the potentiometer to adjust the volume.

Program Overview

Inside the main loop:

1. Play the first note for x number of beats using the play function.
a. (Inside the play function:) Take the note passed to the play function and compare it to each letter in

the notes array. When you find a note that matches, remember the index position of that note (e.g.,
6th entry in the notes array).

b. Get a frequency from the frequency array that has the same index as the note that matched (e.g., the
6th frequency).

c. Play that frequency for the number of beats passed to the play function.
2. Play the second note using the play function

...and so on.

Code to Note

Code Description

Character Variables:

void play(char note,
int beats)

The char, or character, variable to store character values. For example, in this
sketch, the play() function gets passed two variables, a character variable that
represents the mucial note we want to play and an integer variable that
represents how long to play that note. A second array takes the character
variable and associates a frequency value to it. This makes programming a song
easier as you can just reference the character and not the exact frequency.

https://cdn.sparkfun.com/assets/learn_tutorials/7/1/9/Tinker_Kit_Circuit5_BuzzerDemo.jpg
https://www.arduino.cc/en/Reference/char

Tone Function:

tone(pin, frequency,
duration);

The tone() function will pulse power to a pin at a specific frequency. The duration
controls how long the sound will play. Tone can be used on any digital pin.

Declaring an Array:

arrray_name[array_size];

or arrray_name[] = {array
elements};

To declare an array, you must give it a name, then either tell Arduino how many
positions the array will have or assign a list of values to the array.

Calling an Array:

array_name[index #];

To call one of the values in an array, simply type the name of the array and the
index of the value. You can use a variable instead of a number in between the
square brackets. Don't forget the index starts at 0, not 1, so to call the first
element, use array_name[0]; .

Coding Challenges

Challenge Description

Change the tempo of the
song

Experiment with the beatLength; variable to change the tempo of the song.

Make your own song Try changing the notes to make a different song. Spaces " " can be used for
rests in the song.

Troubleshooting

Problem Solution

The song is too
quiet or too loud

Turn the potentiometer to adjust the volume.

No sound is
playing

Try pressing the reset button on the RedBoard. If that doesn’t work, check your wiring of
the buzzer. It's easy to misalign a pin with a jumper wire.

Circuit 6: Digital Trumpet
Learn about digital inputs and buttons as you build your own digital trumpet!

https://www.arduino.cc/en/Reference/tone
https://www.arduino.cc/en/Reference/array
https://cdn.sparkfun.com/assets/learn_tutorials/1/9/9/2/Tinker_Kit_Circuit6.jpg

Parts Needed

Gather the following parts to build the circuit:

1x Breadboard
1x SparkFun RedBoard
10x Jumper Wires
1x 10K Potentiometer
1x Buzzer
1x Green Push Button
1x Yellow Push Button
1x Red Push Button

Didn't Get the Tinker Kit?

If you are conducting this experiment and didn't get the Tinker Kit, we suggest using these parts:

SparkFun RedBoard Qwiic

DEV-15123

Breadboard - Self-Adhesive (White)

PRT-12002

Trimpot 10K Ohm with Knob

COM-09806

Multicolor Buttons - 4-pack

PRT-14460

Mini Speaker - PC Mount 12mm 2.048kHz

https://www.sparkfun.com/products/15123
https://www.sparkfun.com/products/15123
https://www.sparkfun.com/products/12002
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/12002
https://www.sparkfun.com/products/9806
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/9806
https://www.sparkfun.com/products/14460
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14460
https://www.sparkfun.com/products/11026
https://www.sparkfun.com/products/7950
https://www.sparkfun.com/products/7950

New Components
Buttons

Buttons, also known as momentary switches, are switches that only remain in their on state as long as they’re
being actuated, or pressed. Most often momentary switches are best used for intermittent user-input cases: reset
button and keypad buttons. These switches have a nice, tactile, “clicky” feedback when you press them.

Note that the different colors are just aesthetic. All of the buttons included behave the same no matter their color.

New Concepts
Binary Number System

Number systems are the methods we use to represent numbers. We’ve all been mostly operating within the comfy
confines of a base-10 number system, but there are many others. The base-2 system, otherwise known as binary,
is common when dealing with computers and electronics. There are really only two ways to represent the state of
anything: ON or OFF, HIGH or LOW, 1 or 0. And so, almost all electronics rely on a base-2 number system to store
and manipulate numbers. The heavy reliance electronics places on binary numbers means it’s important to know
how the base-2 number system works.

Digital Input

In circuit 1, you worked with digital outputs. This circuit focuses on digital inputs. Digital inputs only care if
something is in one of two states: TRUE or FALSE, HIGH or LOW, ON or OFF. Digital inputs are great for
determining if a button has been pressed or if a switch has been flipped.

Pull-up Resistors

A pull-up resistor is a small circuit that holds the voltage HIGH (5V) on a pin until a button is pressed, pulling the
voltage LOW (0V). The most common place you will see a pull-up resistor is when working with buttons. A pull-up
resistor keeps the button in one state until it is pressed. The RedBoard has built-in pull-up resistors, but they can
also be added to a circuit externally. This circuit uses the internal pull-up resistors, covered in more detail in the
Code to Note section.

Hardware Hookup

Jumper Wires Standard 7" M/M - 30 AWG (30
Pack)

PRT-11026


COM-07950

https://learn.sparkfun.com/tutorials/switch-basics
https://cdn.sparkfun.com/assets/learn_tutorials/6/3/6/Buttons.jpg
https://learn.sparkfun.com/tutorials/binary
https://www.arduino.cc/en/Tutorial/DigitalPins
https://learn.sparkfun.com/tutorials/pull-up-resistors
https://www.sparkfun.com/products/11026
https://learn.sparkfun.com/static/bubbles/

Buttons are not polarized. However, they do merit a closer look. Buttons make momentary contact from one
connection to another, so why are there four legs on each button? The answer is to provide more stability and
support to the buttons in your breadboard circuit. Each row of legs is connected internally. When the button is
pressed, one row connects to the other, making a connection between all four pins.

If the button's legs don't line up with the slots on the breadboard, rotate it 90 degrees.

Ready to start hooking everything up? Check out the circuit diagram and hookup table below to see how
everything is connected.

Circuit Diagram

Having a hard time seeing the circuit? Click on the image for a closer look.

Hookup Table

Component RedBoard Breadboard Breadboard Breadboard

Buzzer J1 (Buzzer +) J3 (Buzzer -)

Potentiometer B1 B2 B3

Jumper Wire GND GND Rail (-)

Jumper Wire Digital Pin 10 F1

Jumper Wire E2 GND Rail (-)

Jumper Wire E1 F3



https://cdn.sparkfun.com/assets/learn_tutorials/6/3/6/Button_labeled.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/1/9/9/2/Tinker_Kit_Circuit6-Fritzing.jpg

Push Button D16/D18 G16/G18

Push Button D22/D24 G22/G24

Push Button D28/D30 G28/G30

Jumper Wire Digital Pin 4 J18

Jumper Wire Digital Pin 3 J24

Jumper Wire Digital Pin 2 J30

Jumper Wire J16 GND Rail (-)

Jumper Wire J22 GND Rail (-)

Jumper Wire J28 GND Rail (-)

In the table, polarized components are shown with a warning triangle and the whole row highlighted yellow.

Open the Sketch

Open the example code from your Arduino sketchbook or copy and paste the following code into the Arduino IDE.
Hit upload, and see what happens!

https://learn.sparkfun.com/tutorials/polarity

/*

SparkFun Tinker Kit

Circuit 6: Digital Trumpet

Use 3 buttons plugged to play musical notes on a buzzer.

This sketch was written by SparkFun Electronics, with lots of help from the Arduino community.

This code is completely free for any use.

View circuit diagram and instructions at: https://learn.sparkfun.com/tutorials/activity-guide-fo
r-sparkfun-tinker-kit/

Download drawings and code at: https://github.com/sparkfun/SparkFun_Tinker_Kit_Code/

*/

//set the pins for the button and buzzer

int firstKeyPin = 2;

int secondKeyPin = 3;

int thirdKeyPin = 4;

int buzzerPin = 10;

void setup() {

 //set the button pins as inputs

 pinMode(firstKeyPin, INPUT_PULLUP);

 pinMode(secondKeyPin, INPUT_PULLUP);

 pinMode(thirdKeyPin, INPUT_PULLUP);

 //set the buzzer pin as an output

 pinMode(buzzerPin, OUTPUT);

}

void loop() {

 if(digitalRead(firstKeyPin) == LOW){ //if the first key is pressed

 tone(buzzerPin, 262); //play the frequency for c

 }

 else if(digitalRead(secondKeyPin) == LOW){ //if the second key is pressed

 tone(buzzerPin, 330); //play the frequency for e

 }

 else if(digitalRead(thirdKeyPin) == LOW){ //if the third key is pressed

 tone(buzzerPin, 392); //play the frequency for g

 }

 else{

 noTone(buzzerPin); //if no key is pressed turn the buzzer off

 }

}

 /*

 note frequency
 c 262 Hz

 d 294 Hz

 e 330 Hz

 f 349 Hz

 g 392 Hz

 a 440 Hz

 b 494 Hz

 C 523 Hz

 */

What You Should See

Different tones will play when you press different keys. Turning the potentiometer will adjust the volume.

Program Overview

1. Check to see if the first button is pressed.
a. If it is, play the frequency for c.
b. If it isn’t, skip to the next else
if statement.

2. Check to see if the second button is pressed.
a. If it is, play the frequency for e.
b. If it isn’t, skip to the next
else if statement.

3. Check to see if the second button is pressed.
a. If it is, play the frequency for g.
b. If it isn’t, skip to the next
else if statement.

4. If none of the if statements are true
a. Turn the buzzer off.

Code to Note

Code Description

Internal Pull-Up Resistor:

pinMode(firstKeyPin,
INPUT_PULLUP);

To declare a standard input, use the line pinMode(pin_name, INPUT) . If you
would like to use one of the RedBoard's built-in pull-up 20kΩ resistors, it
would look like this: pinMode(firstKeyPin, INPUT_PULLUP); . The advantage
of external pull-ups is being able to choose a more exact value for the
resistor.

Digital Input:

digitalRead(pin);

Check to see if an input pin is reading HIGH (5V) or LOW (0V). Returns
TRUE (1) or FALSE (0) depending on the reading.

Is Equal to:

if(digitalRead(firstKeyPin)
== LOW)

This is another logical operator. The 'is equal to' symbol (==) can be
confusing. Two equals signs are equivalent to asking, "Are these two values
equal to one another?" On the other hand, one equals sign in code is
assigning a particular variable to a value. Don't forget to add the second
equals sign if you are comparing two values.

https://cdn.sparkfun.com/assets/learn_tutorials/1/9/9/2/Tinker_Kit_Circuit6-Demo.jpg

Coding Challenges

Challenge Description

Change the
key of each
button

Use the frequency table in the comment section at the end of the code to change the notes
that each button plays.

Play more
than three
notes with if
statements

By using combinations of buttons, you can play up to seven notes of the scale. You can do
this in a few ways. To get more practice with if statements, try adding seven if statements and
using the Boolean AND (&&) operator to represent all of the combinations of keys.

Play more
than three
notes with
binary math

You can use a clever math equation to play more than three notes with your three keys. By
multiplying each key by a different number, then adding up all of these numbers, you can
make a math equation that produces a different number for each combination of keys.

Troubleshooting

Problem Solution

The buzzer is too
loud or too quiet

Turn the potentiometer to adjust the volume.

The RedBoard
thinks one key is
always pressed

Check your wiring. You may have ground and 5V backward if one or more buttons behave
as though they're pressed all the time.

The buttons are
not working

First, make sure that the wiring is correct. It is easy to misalign a wire with a button leg.
Second, make sure that you have declared your buttons as inputs and have enabled the
internal pull-up resistors with INPUT_PULLUP .

Circuit 7: Simon Says Game
The Simon Says game uses LEDs to flash a pattern, which the player must remember and repeat using four
buttons. The classic [Simon](https://en.wikipedia.org/wiki/Simon_(game)) game has been a hit since the 1980s.
Now you can build your own!

https://cdn.sparkfun.com/assets/learn_tutorials/1/9/9/2/Tinker_Kit_Circuit7.jpg

Parts Needed

You will need the following parts:

1x Breadboard
1x SparkFun RedBoard
16x Jumper Wires
4x 330Ω Resistor
1x 10K Potentiometer
1x Buzzer
1x Blue LED
1x Blue Push Button
1x Green LED
1x Green Push Button
1x Yellow LED
1x Yellow Push Button
1x Red LED
1x Red Push Button

Didn't Get the Tinker Kit?

If you are conducting this experiment and didn't get the Tinker Kit, we suggest using these parts:

SparkFun RedBoard Qwiic

DEV-15123

Breadboard - Self-Adhesive (White)

PRT-12002

Trimpot 10K Ohm with Knob

COM-09806

LED - Assorted (20 pack)

COM-12062

https://www.sparkfun.com/products/15123
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/15123
https://www.sparkfun.com/products/12002
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/12002
https://www.sparkfun.com/products/9806
https://www.sparkfun.com/products/9806
https://www.sparkfun.com/products/12062
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/12062

New Concepts
For Loops

For loops repeat a section of code a set number of times. The loop works by using a counter (usually
programmers use the letter “i” for this variable) that increases each loop until it reaches a stop value. Here’s an
example of a simple for loop:

for (int i = 0; i < 5; i++){

 Serial.print(i);

}

The for loop takes three parameters in the brackets, separated by semicolons. The first parameter is the start
value. In this case, integer i starts at 0. The second value is the stop condition. In this case, we stop the loop
when i is no longer less than 5 (i < 5 is no longer true). The final parameter is an increment value. i++ is
shorthand for increase i by 1 each time, but you could also increase i by different amounts. This loop would
repeat five times. Each time it would run the code in between the brackets, which prints the value of i to the
serial monitor.

Measuring Durations of Time With millis()

Multicolor Buttons - 4-pack

PRT-14460

Jumper Wires Standard 7" M/M - 30 AWG (30
Pack)

PRT-11026

Mini Speaker - PC Mount 12mm 2.048kHz

COM-07950

Resistor 330 Ohm 1/4 Watt PTH - 20 pack
(Thick Leads)

PRT-14490

https://www.arduino.cc/en/Reference/For
https://www.sparkfun.com/products/14460
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14460
https://www.sparkfun.com/products/11026
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/11026
https://www.sparkfun.com/products/7950
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/7950
https://www.sparkfun.com/products/14490
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14490

The RedBoard has a built-in clock that keeps accurate time. You can use the millis() command to see how
many milliseconds have passed since the RedBoard was last powered. By storing the time when an event
happens and then subtracting the current time, you can measure the number of milliseconds (and thus seconds)
that have passed. This sketch uses this function to set a time limit for repeating the pattern.

Custom Functions

This sketch uses several user-defined functions. These functions perform operations that are needed many times
in the program (for example, reading which button is currently pressed or turning all of the LEDs off). Functions are
essential to make more complex programs readable and compact.

Hardware Hookup

Ready to start hooking everything up? Check out the circuit diagram and hookup table below to see how
everything is connected.

Circuit Diagram

Having a hard time seeing the circuit? Click on the image for a closer look.

Hookup Table

Component RedBoard Breadboard Breadboard Breadboard

Buzzer J1 (Buzzer +) J3 (Buzzer -)

Potentiometer B1 B2 B3

Jumper Wire GND GND Rail (-)

Jumper Wire Digital Pin 10 F1

Jumper Wire E2 GND Rail (-)

Jumper Wire E1 F3

Push Button D10/D12 G10/G12

Push Button D16/D18 G16/G18

Push Button D22/D24 G22/G24



https://cdn.sparkfun.com/assets/learn_tutorials/1/9/9/2/Tinker_Kit_Circuit7-Fritzing.jpg

Push Button D28/D30 G28/G30

Jumper Wire Digital Pin 8 J12

Jumper Wire Digital Pin 6 J18

Jumper Wire Digital Pin 4 J24

Jumper Wire Digital Pin 2 J30

Jumper Wire J10 GND Rail (-)

Jumper Wire J16 GND Rail (-)

Jumper Wire J22 GND Rail (-)

Jumper Wire J28 GND Rail (-)

Blue LED H7 LED (+) H8 LED (-)

Green LED H13 LED (+) H14 LED (-)

Yellow LED H19 LED (+) H20 LED (-)

Red LED H25 LED (+) H26 LED (-)

Jumper Wire Digital Pin 9 J7

Jumper Wire Digital Pin 7 J13

Jumper Wire Digital Pin 5 J19

Jumper Wire Digital Pin 3 J25

330Ω Resistor

(orange, orange, brown)

J8 GND Rail (-)

330Ω Resistor

(orange, orange, brown)

J14 GND Rail (-)

330Ω Resistor

(orange, orange, brown)

j20 GND Rail (-)

330Ω Resistor

(orange, orange, brown)

J26 GND Rail (-)

In the table, polarized components are shown with a warning triangle and the whole row highlighted yellow.

Open the Sketch









https://learn.sparkfun.com/tutorials/polarity

Open the example code from your Arduino sketchbook or copy and paste the following code into the Arduino IDE.
Hit upload, and see what happens!

/*

SparkFun Tinker Kit

Circuit 7: Simon Says Game

The Simon Says game flashes a pattern using LED lights, then the player must repeat the pattern.

This sketch was written by SparkFun Electronics, with lots of help from the Arduino community.

This code is completely free for any use.

View circuit diagram and instructions at: https://learn.sparkfun.com/tutorials/activity-guide-fo
r-sparkfun-tinker-kit/

Download drawings and code at: https://github.com/sparkfun/SparkFun_Tinker_Kit_Code/

*/

//set the pins where the butons, LEDs and buzzer connect

int button[] = {2,4,6,8}; //red is button[0], yellow is button[1], green is button[2], blue
 is button[3]

int led[] = {3,5,7,9}; //red is led[0], yellow is led[1], green is led[2], blue is led[3]

int tones[] = {262, 330, 392, 494}; //tones to play with each button (c, e, g, b)

int roundsToWin = 10; //number of rounds the player has to play before they win the game
(the array can only hold up to 16 rounds)

int buttonSequence[16]; //make an array of numbers that will be the sequence that the play
er needs to remember

int buzzerPin = 10; //pin that the buzzer is connected to

int pressedButton = 4; //a variable to remember which button is being pressed. 4 is the v
alue if no button is being pressed.

int roundCounter = 1; //keeps track of what round the player is on

long startTime = 0; //timer variable for time limit on button press

long timeLimit = 2000; //time limit to hit a button

boolean gameStarted = false; //variable to tell the game whether or not to play the start s
equence

void setup(){

 //set all of the button pins to input_pullup (use the builtin pullup resistors)

 pinMode(button[0], INPUT_PULLUP);

 pinMode(button[1], INPUT_PULLUP);

 pinMode(button[2], INPUT_PULLUP);

 pinMode(button[3], INPUT_PULLUP);

 //set all of the LED pins to output

 pinMode(led[0], OUTPUT);

 pinMode(led[1], OUTPUT);

 pinMode(led[2], OUTPUT);

 pinMode(led[3], OUTPUT);

 pinMode(buzzerPin, OUTPUT); //set the buzzer pin to output

}

void loop(){

if (gameStarted == false){ //if the game hasn't started yet

 startSequence(); //flash the start sequence

 roundCounter = 0; //reset the round counter

 delay(1500); //wait a second and a half

 gameStarted = true; //set gameStarted to true so that this sequence doesn't start agai
n

}

//each round, start by flashing out the sequence to be repeated

for(int i=0; i <= roundCounter; i++){ //go through the array up to the current round number

 flashLED(buttonSequence[i]); //turn on the LED for that array position and play the s
ound

 delay(200); //wait

 allLEDoff(); //turn all of the LEDs off

 delay(200);

}

//then start going through the sequence one at a time and see if the user presses the correct bu
tton

for(int i=0; i <= roundCounter; i++){ //for each button to be pressed in the sequence

 startTime = millis(); //record the start time

 while(true){ //loop until the player presses a button or the time limit is up (the time limit
check is in an if statement)

 pressedButton = buttonCheck(); //every loop check to see which button is pressed

 if (pressedButton < 4){ //if a button is pressed... (4 means that no button is p
ressed)

 flashLED(pressedButton); //flash the LED for the button that was pressed

 if(pressedButton == buttonSequence[i]){ //if the button matches the button in the sequen
ce

 delay(250); //leave the LED light on for a moment

 allLEDoff(); //then turn off all of the lights and

 break; //end the while loop (this will go to the next number in
the for loop)

 } else{ //if the button doesn't match the button in the sequence

 loseSequence(); //play the lose sequence (the loose sequence stops the p
rogram)

 break; //when the program gets back from the lose sequence, bre
ak the while loop so that the game can start over

 }

 } else { //if no button is pressed

 allLEDoff(); //turn all the LEDs off

 }

 //check to see if the time limit is up

 if(millis() - startTime > timeLimit){ //if the time limit is up

 loseSequence(); //play the lose sequence

 break; //when the program gets back from the lose sequence,
break the while loop so that the game can start over

 }

 }

}

 roundCounter = roundCounter + 1; //increase the round number by 1

 if (roundCounter >= roundsToWin){ //if the player has gotten to the 16th round

 winSequence(); //play the winning song

 }

 delay(500); //wait for half a second between rounds

}

//----------FUNCTIONS------------

//FLASH LED

void flashLED (int ledNumber){

 digitalWrite(led[ledNumber], HIGH);

 tone(buzzerPin, tones[ledNumber]);

}

//TURN ALL LEDS OFF

void allLEDoff (){

 //turn all the LEDs off

 digitalWrite(led[0],LOW);

 digitalWrite(led[1],LOW);

 digitalWrite(led[2],LOW);

 digitalWrite(led[3],LOW);

 //turn the buzzer off

 noTone(buzzerPin);

}

//CHECK WHICH BUTTON IS PRESSED

int buttonCheck(){

 //check if any buttons are being pressed

 if(digitalRead(button[0]) == LOW){

 return 0;

 }else if(digitalRead(button[1]) == LOW){

 return 1;

 }else if(digitalRead(button[2]) == LOW){

 return 2;

 }else if(digitalRead(button[3]) == LOW){

 return 3;

 }else{

 return 4; //this will be the value for no button being pressed

 }

}

//START SEQUENCE

void startSequence(){

 randomSeed(analogRead(A0)); //make sure the random numbers are really random

 //populate the buttonSequence array with random numbers from 0 to 3

 for (int i=0;i<=roundsToWin;i++){

 buttonSequence[i] = round(random(0,4));

 }

 //flash all of the LEDs when the game starts

 for(int i=0; i<=3; i++){

 tone(buzzerPin, tones[i], 200); //play one of the 4 tones

 //turn all of the leds on

 digitalWrite(led[0],HIGH);

 digitalWrite(led[1],HIGH);

 digitalWrite(led[2],HIGH);

 digitalWrite(led[3],HIGH);

 delay(100); //wait for a moment

 //turn all of the leds off

 digitalWrite(led[0],LOW);

 digitalWrite(led[1],LOW);

 digitalWrite(led[2],LOW);

 digitalWrite(led[3],LOW);

 delay(100); //wait for a moment

 } //this will repeat 4 times

}

//WIN SEQUENCE

void winSequence(){

 //turn all the LEDs on

 for(int j=0; j<=3; j++){

 digitalWrite(led[j], HIGH);

 }

 //play the 1Up noise

 tone(buzzerPin, 1318, 150); //E6

 delay(175);

 tone(buzzerPin, 1567, 150); //G6

 delay(175);

 tone(buzzerPin, 2637, 150); //E7

 delay(175);

 tone(buzzerPin, 2093, 150); //C7

 delay(175);

 tone(buzzerPin, 2349, 150); //D7

 delay(175);

 tone(buzzerPin, 3135, 500); //G7

 delay(500);

 //wait until a button is pressed

 do {

 pressedButton = buttonCheck();

 } while(pressedButton > 3);

 delay(100);

 gameStarted = false; //reset the game so that the start sequence will play again.

}

//LOSE SEQUENCE

void loseSequence(){

 //turn all the LEDs on

 for(int j=0; j<=3; j++){

 digitalWrite(led[j], HIGH);

 }

 //play the 1Up noise

 tone(buzzerPin, 130, 250); //E6

 delay(275);

 tone(buzzerPin, 73, 250); //G6

 delay(275);

 tone(buzzerPin, 65, 150); //E7

 delay(175);

 tone(buzzerPin, 98, 500); //C7

 delay(500);

 //wait until a button is pressed

 do {

 pressedButton = buttonCheck();

 } while(pressedButton > 3);

 delay(200);

 gameStarted = false; //reset the game so that the start sequence will play again.
}

What You Should See

The circuit will flash all of the LEDs and play a melody. After a few seconds, it will flash the first light in the pattern.
If you repeat the pattern correctly by pressing the corresponding colored button, then the game will move to the
next round and add another color to the pattern sequence. If you make a mistake, the loss melody will play. If you
get to round 10, the win melody will play. Press any button to start a new game.

Program Overview

1. Check if a new game is starting. If it is, play the start sequence. Reset the counter that keeps track of
rounds, and randomly generate a sequence of numbers from 0 to 3 that control which LEDs the user will
have to remember.

2. The game works in rounds that progress from 0 to 10. Each round the game will flash LEDs in a pattern,
then the player has to recreate the pattern by pressing the button(s) that match the LED(s). In the first
round, one LED will flash, and the player will have to press one button. In the eighth round, eight LEDs will
flash, and the player will have to press eight buttons.

3. Use a loop to flash LEDs from the sequence until you have flashed the number of LEDs that matches the
round number (1 for round 1, 2 for round 2, etc).

4. Start a timer, and wait for the player to press a button. The player has 1.5 seconds to press the correct
button.
a. If the time limit runs out before a button is pressed, the player loses.
b. If the player presses the
wrong button, the player loses.
c. If the player presses the right button, move on to the next number in the
sequence.
d. Repeat this process until the player has lost or correctly repeated the sequence for this round.

5. If the player repeats the entire sequence for that round. Increase the round number by one (this will add one
extra item to the end of the pattern). Then go back to step 3.

6. Keep incrementing the round until the player loses or the player finishes 10 rounds. If the player finishes 10
rounds, play the winning sequence.

Code to Note

Code Description

Elapsed Time:

millis();

The millis function returns the number of milliseconds that have passed since the
RedBoard was last turned on.

Boolean Variables:

boolean
variable_name;

The name for these variables comes from Boolean logic. The Boolean variable type only
has two values: 1 or 0, HIGH or LOW, TRUE or FALSE. Using Boolean variables helps
save memory on your microcontroller if you only need to know if something is true or
false. Space in your microcontroller's memory is reserved when a variable is declared.
How much memory is reserved depends on the type of variable.

Storing pin
numbers in Arrays:

int led[] =
{3,5,7,9};

Sometimes you will want to cycle through all of the LEDs or buttons connected to a
project. You can do this by storing a sequence of pin numbers in an array. The advantage
of having pins in an array instead of a sequence of variables is that you can use a loop to
easily cycle through each pin.

User Functions Description

https://cdn.sparkfun.com/assets/learn_tutorials/1/9/9/2/Tinker_Kit_Circuit7-Demo.gif
https://www.arduino.cc/en/Reference/millis
https://learn.sparkfun.com/tutorials/digital-logic/boolean-logic-in-programming
https://www.arduino.cc/en/Reference/BooleanVariables

flashLED(# for
LED to flash);

This turns one of the four LEDs on and plays the tone associated with it.

0 = Red, 1 = Yellow, 2 = Green, 3 = Blue.

allLEDoff(); Turns all four LEDs off.

buttonCheck(); Uses digitalRead() to check which button is pressed. Returns 0, 1, 2 or 3 if one of the
buttons is pressed. Returns 4 if no button is pressed.

startSequence(); Flashes the LEDs and plays tones in a sequence. Resets the round counter and
generates a new random sequence for the user to remember.

winSequence(); Plays a sequence of tones, turns all of the LEDs on, then waits for the player to press a
button. If a button is pressed, restarts the game.

loseSequence(); Plays a sequence of tones, turns all of the LEDs on, then waits for the player to press a
button. If a button is pressed, restarts the game.

Coding Challenges

Challenge Description

Change
the
difficulty
of the
game

Change the difficulty of the game by changing how fast the player has to press each button or by
increasing or decreasing the number of rounds needed to win. Note that if you increase the
number of rounds to be larger than 16, you will need to change the size of the “buttonSequence”
array (it is set at the top of the code in a line that looks like this: int buttonSequence[16]; .

Change
the sound
effects

Try changing the sequence of notes that play when you start, win or lose the game.

2-Player
mode

Ready for a real coding challenge? Try changing the code so that two players can play head-to-
head.

Troubleshooting

Problem Solution

One of
the
LEDs
isn’t
lighting
up

Make sure your LED is flipped around in the right direction. If the LED still doesn’t work, try wiggling
the resistor and the wires that connect to the LED.

The
buzzer is
too loud
or too
quiet

Turn the potentiometer to adjust the volume

One of
the
buttons
isn’t
working

Carefully check your wiring for each button. One leg of the button should connect to a pin on the
RedBoard; the other leg should connect to the ground rail on the breadboard.

None of
the
buttons
or LEDs
is
working

Make sure you don't have 5V and GND mixed up. Double check that you have a GND connection
from the RedBoard to the GND rail on the breadboard.

Still not
working?

Jumper wires unfortunately can go "bad" from getting bent too much. The copper wire inside can
break, leaving an open connection in your circuit. If you are certain that your circuit is wired
correctly and that your code is error-free and uploaded, but you are still encountering issues, try
replacing one or more of the jumper wires for the component that is not working.

Circuit 8: Servo Motors
In this circuit, you will learn how to wire a servo and control it with code. Servo motors can be told to move to a
specific position and stay there. Low-cost servo motors were originally used to steer remote-controlled airplanes
and cars, but they have become popular for any project where precise movement is needed.

Parts Needed

You will need the following parts:

1x Breadboard
1x SparkFun RedBoard
8x Jumper Wires
1x 10K Potentiometer
1x Servo

https://cdn.sparkfun.com/assets/learn_tutorials/1/9/9/2/Tinker_Kit_Circuit8.jpg

Didn't Get the Tinker Kit?

If you are conducting this experiment and didn't get the Tinker Kit, we suggest using these parts:

New Components
Servo Motors

SparkFun RedBoard Qwiic

DEV-15123

Breadboard - Self-Adhesive (White)

PRT-12002

Servo - Generic (Sub-Micro Size)

ROB-09065

Trimpot 10K Ohm with Knob

COM-09806

Jumper Wires Standard 7" M/M - 30 AWG (30
Pack)

PRT-11026

https://www.sparkfun.com/products/15123
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/15123
https://www.sparkfun.com/products/12002
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/12002
https://www.sparkfun.com/products/9065
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/9065
https://www.sparkfun.com/products/9806
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/9806
https://www.sparkfun.com/products/11026
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/11026

Regular DC motors have two wires. When you hook the wires up to power, the motor spins around and around.
Servo motors, on the other hand, have three wires: one for power, one for ground and one for signal. When you
send the right signal through the signal wire, the servo will move to a specific angle and stay there. Common
servos rotate over a range of 0° to 180°. The signal that is sent is a PWM signal, the same used to control the
RGB LED.

New Concepts
Duty Cycle

The Pulse Width Modulation (PWM) hardware available on a microcontroller is a great way to generate servo
control signals. When talking about how long a PWM signal is on, this is referred to as duty cycle. Duty cycle is
measured in percentage. The percentage of duty cycle specifically describes the percentage of time a digital signal
is on over an interval or period of time. The variation in the duty cycle tells the servo which position to go to in its
rotation.

50%, 75% and 25% duty cycle examples

Arduino Libraries

Writing code that sends precise PWM signals to the servo would be time consuming and would require a lot more
knowledge about the servo. Luckily, the Arduino IDE has hundreds of built-in and user-submitted containers of
code that are called libraries. One of the built-in libraries, the Servo Library, allows us to control a servo with just a
few lines of code!

https://learn.sparkfun.com/tutorials/hobby-servo-tutorial
https://cdn.sparkfun.com/assets/learn_tutorials/5/0/5/09065-01a.jpg
https://learn.sparkfun.com/tutorials/pulse-width-modulation#duty-cycle
https://cdn.sparkfun.com/assets/f/9/c/8/a/512e869bce395fbc64000002.JPG
https://www.arduino.cc/en/Reference/Libraries
https://www.arduino.cc/en/Reference/Servo

To use one of the built-in Arduino libraries, all you have to do is "include" a link to its header file. A header file is a
smaller code file that contains definitions for all the functions used in that library. By adding a link to the header file
in your code, you are enabling your code to use all of those library functions. To use the Servo Library, you would
add the following line to the top of your sketch.

#include <Servo.h>

Objects and Methods

To use the Servo Library, you will have to start by creating a servo object, like this:

Servo myServo;

Objects look a lot like variables, but they can do much more. Objects can store values, and they can have their
own functions, which are called methods.

The most used method that a servo object has is .write() .

myServo.write(90);

The write method takes one parameter, a number from 0 to 180, and moves the servo arm to the specified position
(in this case, degree 90).

Why would we want to go to the trouble of making an object and a method instead of just sending a servo control
signal directly over a pin? First, the servo object does the work of translating our desired position into a signal that
the servo can read. Second, using objects makes it easy for us to add and control more than one servo.

Hardware Hookup

Polarized Components

Pay special attention to the component’s markings indicating how to place it on the breadboard. Polarized
components can only be connected to a circuit in one direction.

Servo motor connectors are polarized, but there is no place to attach them directly. Instead, connect three jumper
wires to the female 3-pin header on the servo. This will make it so you can connect the servo to the breadboard.

The servo wires are color coded to make hookup simple. The pin-out is as follows:

Pin Description



https://www.arduino.cc/en/Hacking/LibraryTutorial
https://cdn.sparkfun.com/assets/learn_tutorials/2/7/5/Galileo_SIK_servo_jumpers.jpg

White Signal - PWM In

Red Power (5V)

Black Ground (GND)

Included with your servo motor you will find a variety of motor mounts that connect to the shaft of your servo. You
may choose to attach any mount you wish for this circuit. It will serve as a visual aid, making it easier to see the
servo spin.

The various motor mounts included with your servo motor

Ready to start hooking everything up? Check out the Fritzing diagram below to see how everything is connected.

Circuit Diagram

Having a hard time seeing the circuit? Click on the image for a closer look.

Hookup Table

Component RedBoard Breadboard Breadboard Breadboard Servo

Potentiometer B1 B2 B3



https://cdn.sparkfun.com/assets/learn_tutorials/3/3/2/ServoMotorMounts.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/1/9/9/2/Tinker_Kit_Circuit8-Fritzing.jpg

Jumper Wire Analog Pin 0 E2

Jumper Wire E1 5V Rail (+)

Jumper Wire E3 GND Rail (-)

Jumper Wire 5V 5V Rail (+)

Jumper Wire GND GND Rail (-)

Jumper Wire Digital Pin 9 White Servo Pin

Jumper Wire 5V Rail (+) Red Servo Pin

Jumper Wire GND Rail (-) Black Servo Pin

In the table, polarized components are shown with a warning triangle and the whole column highlighted yellow.

Open the Sketch

Open the example code from your Arduino sketchbook or copy and paste the following code into the Arduino IDE.
Hit upload, and see what happens!

https://learn.sparkfun.com/tutorials/polarity

/*

SparkFun Tinker Kit

Circuit 8: Servo Motors

Move a servo attached to pin 9 so that it's angle matches a potentitometer attached to A0.

This sketch was written by SparkFun Electronics, with lots of help from the Arduino community.

This code is completely free for any use.

View circuit diagram and instructions at: https://learn.sparkfun.com/tutorials/activity-guide-fo
r-sparkfun-tinker-kit/

Download drawings and code at: https://github.com/sparkfun/SparkFun_Tinker_Kit_Code/

 */

#include <Servo.h> //include the servo library

int potPosition; //this variable will store the position of the potentiometer

int servoPosition; //the servo will move to this position

Servo myservo; //create a servo object

void setup() {

 myservo.attach(9); //tell the servo object that its servo is plugged into pin 9

}

void loop() {

 potPosition = analogRead(A0); //use analog read to measure the position of
the potentiometer (0-1023)

 servoPosition = map(potPosition, 0,1023,20,160); //convert the potentiometer number to a serv
o position from 20-160

 //Note: its best to avoid driving the little
SIK servos all the

 //way to 0 or 180 degrees it can cause the m
otor to jitter, which is bad for the servo.

 myservo.write(servoPosition); //move the servo to the 10 degree position

}

What You Should See

Turning the potentiometer will cause the servo to turn.

Program Overview

1. Read the value of the potentiometer.
2. Convert the potentiometer value (0--1023) to an angle (20--160).
3. Tell the servo to go to this angle.

Code to Note

Code Description

Including Libraries:

#include <Servo.h>

The #include command adds a library to your Arduino program. After you include a
library, you can use the commands in the library in your program. This line adds the
Servo library.

Creating Servo
Objects:

Servo myServo;

The Servo command creates a new servo object and assigns a name to it, myServo in
this case. If you make more than one servo object, you will need to give them different
names.

Servo Attach:

myServo.attach(9);

The .attach() method tells the servo object to which pin the signal wire of its servo is
attached. It will send position signals to this pin. In this sketch, pin 9 is used.
Remember to only use digital pins that are capable of PWM.

Range Mapping:

map(potPosition,
0,1023,20,160);

As shown in previous circuits, the analog pin values on your microcontroller vary from
0-1023. However, what if we want those values to control a servo motor that only
accepts a value from 0-180? The answer is to use the map function. The map()
function takes a range of values and outputs a different range of values that can
contain more or less values than the original. In this case, we are taking the range 0-
1023 and mapping it to the range 20-160.

Servo Write:

myServo.write(90);

The .write() method moves the servo to a specified angle. In this example, the servo
is being told to go to angle 90.

Coding Challenges

Challenge Description

Reverse the
direction

Try making the servo move in the opposite direction to the potentiometer.

Change the range Try altering the map function so that moving the potentiometer a lot only moves the
servo a little.

https://cdn.sparkfun.com/assets/learn_tutorials/1/9/9/2/Tinker_Kit_Circuit8-Motion_Demo.gif
https://www.arduino.cc/en/Reference/Map

Swap in a different
sensor

Try swapping a light sensor in for the potentiometer. You have just made a dial that
reads how much light is present!

Troubleshooting

Problem Solution

The
servo
doesn’t
move

Check the wiring on your servo. Make sure that the red wire on the servo cord is connected to 5V,
the black wire is connected to GND and the white signal wire is connected to pin 9.

The
servo is
twitching

Although these servos are supposed to move from 0 to 180 degrees, sometimes sending them to
the extremes of their range causes them to twitch (the servo is trying to move farther than it can).
Make sure that you aren’t telling the servo to move outside of the 20-160 degree range.

Circuit 9: Temperature Sensor
Want to create a DIY environmental monitor or weather station? You can use a small, low-cost sensor like the
TMP36 to make devices that track and respond to temperature. In this activity, you will read the raw 0--1023 value
from the temperature sensor, calculate the actual temperature, and then print it out over the serial monitor.

Parts Needed

You will need the following parts:

1x Breadboard
1x SparkFun RedBoard
3x Jumper Wires
1x TMP36 Temperature Sensor

Didn't Get the Tinker Kit?

If you are conducting this experiment and didn't get the Tinker Kit, we suggest using these parts:

https://cdn.sparkfun.com/assets/learn_tutorials/1/9/9/2/Tinker_Kit_Circuit9.jpg

New Components
TMP36 Temperature Sensor

This temperature sensor has three legs. One connects to 5V, one to ground, and the voltage output from the third
leg varies proportionally to changes in temperature. By doing some simple math with this voltage we can measure
temperature in degrees Celsius or Fahrenheit.

SparkFun RedBoard Qwiic

DEV-15123

Breadboard - Self-Adhesive (White)

PRT-12002

Jumper Wires Standard 7" M/M - 30 AWG (30
Pack)

PRT-11026

Temperature Sensor - TMP36

SEN-10988

https://www.sparkfun.com/products/15123
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/15123
https://www.sparkfun.com/products/12002
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/12002
https://www.sparkfun.com/products/11026
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/11026
https://www.sparkfun.com/products/10988
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/10988

New Concepts
Algorithms

An algorithm is a process used in order to achieve a desired result. Often, the information needed to create an
algorithm lives in the part's datasheet. This sketch uses a few formulas to turn a voltage value into a temperature
value, making them all part of the larger temperature-retrieving algorithm. The first formula takes the voltage read
on analog pin 0 and multiplies it to get a voltage value from 0V--5V:

voltage = analogRead(A0) * 0.004882814;

The number we are multiplying by comes from dividing 5V by the number of samples the analog pin can read
(1024), so we get: 5 / 1024 = 0.004882814.

The second formula takes that 0--5V value and calculates degrees Centigrade:

degreesC = (voltage - 0.5) * 100.0;

The reason 0.5V is subtracted from the calculated voltage is because there is a 0.5V offset, mentioned on page 8
of the TMP36 datasheet. It's then multiplied by 100 to get a value that matches temperature.

The last formula takes the Centigrade temperature and converts it to a Fahrenheit temperature using the standard
conversion formula:

degreesF = degreesC * (9.0/5.0) + 32.0;

Together, these three formulas make up the algorithm that converts voltage to degrees Fahrenheit.

Hardware Hookup

Polarized
Components

Pay special attention to the component’s markings indicating how to place it on the breadboard.
Polarized components can only be connected to a circuit in one direction.



https://cdn.sparkfun.com//assets/parts/4/1/8/8/10988-01.jpg
https://cdn.sparkfun.com/datasheets/Sensors/Temp/TMP35_36_37.pdf

The temperature sensor is polarized and can only be inserted in one direction. See below for the pin outs of the
temperature sensor. Pay very close attention to the markings on each side as you insert it into your circuit.

Heads up! Double check the polarity of the TMP36 temperature sensor before powering the RedBoard. It
can become very hot if it is inserted backward!

Ready to start hooking everything up? Check out the circuit diagram and hookup table below to see how
everything is connected.

Circuit Diagram

Having a hard time seeing the circuit? Click on the image for a closer look.

Hookup Table

Component RedBoard Breadboard Breadboard Breadboard

TMP36 Temperature Sensor F6 (GND) F7 (Signal) F8 (V+)

Jumper Wire J6 GND(-)

Jumper Wire Analog Pin 0 (A0) J7

Jumper Wire J8 5V (+)



https://cdn.sparkfun.com/assets/learn_tutorials/2/7/5/TMP_pinout_drawing.png
https://cdn.sparkfun.com/assets/learn_tutorials/1/9/9/2/Tinker_Kit_Circuit9-Fritzing.jpg

In the table, polarized components are shown with a warning triangle and the whole row highlighted yellow.

Open the Sketch

Open the example code from your Arduino sketchbook or copy and paste the following code into the Arduino IDE.
Hit upload, and see what happens!

https://learn.sparkfun.com/tutorials/polarity

/*

SparkFun Tinker Kit

Circuit 9: Temperature Sensor

Use the "serial monitor" window to read a temperature sensor.

This sketch was written by SparkFun Electronics, with lots of help from the Arduino community.

This code is completely free for any use.

View circuit diagram and instructions at: https://learn.sparkfun.com/tutorials/activity-guide-fo
r-sparkfun-tinker-kit/

Download drawings and code at: https://github.com/sparkfun/SparkFun_Tinker_Kit_Code/

*/

//analog input pin constant

const int tempPin = 0;

//raw reading variable

int tempVal;

//voltage variable

float volts;

//final temperature variables

float tempC;

float tempF;

void setup()

{

 // start the serial port at 9600 baud

 Serial.begin(9600);

}

void loop()

{

 //read the temp sensor and store it in tempVal

 tempVal = analogRead(tempPin);

 //print out the 10 value from analogRead

 Serial.print("TempVal = ");

 Serial.print(tempVal);

 //print a spacer

 Serial.print(" **** ");

 //converting that reading to voltage by multiplying the reading by 5V (voltage of //the R
edBoard)

 volts = tempVal * 5;

 volts /= 1023.0;

 //print out the raw voltage over the serial port

 Serial.print("volts: ");

 Serial.print(volts, 3);

 //print out divider

 Serial.print(" **** ");

 //calculate temperature celsius from voltage

 //equation found on the sensor spec.

 tempC = (volts - 0.5) * 100 ;

// print the celcius temperature over the serial port

Serial.print(" degrees C: ");

Serial.print(tempC);

//print spacer

 Serial.print(" **** ");

// Convert from celcius to fahrenheit

tempF = (tempC * 9.0 / 5.0) + 32.0;

//print the fahrenheit temperature over the serial port

Serial.print(" degrees F: ");

Serial.println(tempF);

//wait a bit before taking another reading

delay(1000);

}

What You Should See

The Arduino serial monitor will show the temperature in Celsius and Fahrenheit. The temperature readings will
update every second. An easy way to see the temperature change is to press your finger to the sensor.

Here's an example of what you should see in the Arduino IDE’s serial monitor:

https://cdn.sparkfun.com/assets/learn_tutorials/1/9/9/2/Tinker_Kit_Circuit9-Demo.jpg

TempVal = 223 **** volts: 0.719 **** degrees C: 21.94 **** degrees F: 71.48

TempVal = 224 **** volts: 0.723 **** degrees C: 22.26 **** degrees F: 72.06

TempVal = 224 **** volts: 0.723 **** degrees C: 22.26 **** degrees F: 72.06

TempVal = 224 **** volts: 0.723 **** degrees C: 22.26 **** degrees F: 72.06

TempVal = 224 **** volts: 0.723 **** degrees C: 22.26 **** degrees F: 72.06

TempVal = 224 **** volts: 0.723 **** degrees C: 22.26 **** degrees F: 72.06

TempVal = 223 **** volts: 0.719 **** degrees C: 21.94 **** degrees F: 71.48

TempVal = 223 **** volts: 0.719 **** degrees C: 21.94 **** degrees F: 71.48

Program Overview

1. Get the analog value from the TMP36.
2. Print the raw temperature value to the serial monitor.
3. Convert it back to a voltage between 0 and 5V.
4. Print the voltage value.
5. Calculate the degrees Celsius from this voltage.
6. Print the Degrees C.
7. Calculate the degrees Fahrenheit from same voltage.
8. Print the Degrees F.
9. Wait for a second before taking the next reading.

Code to Note

Code Description

Voltage
Conversion
Algorithms

Many of the sensors that you will use with your microcontroller work by changing a voltage in
some predictable way in response to a property of the world (like temperature, light or magnetic
fields).
Often, you will need to build an algorithm that converts these voltages to the desired value
and units. The temperature sensor is a great example of this code. We use three equations to
convert a voltage value into degrees in C and F.

voltage = analogRead(A0) * 0.004882814;

degreesC = (voltage - 0.5) * 100.0;

degreesF = degreesC * (9.0/5.0) + 32.0;

Coding Challenges

Challenge Description

Display the
temperature in
degrees Kelvin

Try adding an equation so that the temperature is displayed in degrees Kelvin (you will
have to look up the formula for converting from degrees Celsius or Fahrenheit to
Kelvin).

Display a LED bar
graph

Try changing the code so you can display the temperature visually as a LED bar graph.

Display values from
another sensor

You can swap out the TMP36 for a potentiometer, photoresistor or other sensor and
display the new set of values.

Add an RGB LED Add an RGB LED that changes color based on the temperature.

Troubleshooting

Problem Solution

Sensor is
warm or hot
to the touch

Make sure that you wired the temperature sensor correctly. The temperature sensor can get
warm to the touch if it is wired incorrectly. Disconnect your microcontroller, rewire the circuit,
and connect it back to your computer.

Temperature
value is
unchanging

Try pinching the sensor with your fingers to heat it up or pressing a bag of ice against it to cool
it down. Also, make sure that the wires are connected properly to the temperature sensor.

Values not
printing to
serial monitor

If you see text but no temperature values, there could be an error in your code. If you see no
text at all, make sure that you are on the correct serial port using a baud rate of 9600.

Circuit 10: Motor Basics
In this circuit you will learn the basic concepts behind motor control. Motors require a lot of current, so you can’t
drive them directly from a digital pin on the RedBoard. Instead, you’ll use what is known as a motor controller or
motor driver board to power and spin the motor accordingly.

Parts Needed

You will need the following parts:

1x Breadboard
1x SparkFun RedBoard
16x Jumper Wires
1x TB6612FNG Motor Driver (w/ Headers)
1x Hobby Gearmotor

Didn't Get the Tinker Kit?

If you are conducting this experiment and didn't get the Tinker Kit, we suggest using these parts:

https://cdn.sparkfun.com/assets/learn_tutorials/1/9/9/2/Tinker_Kit_Circuit10.jpg

New Components
DC Gearmotors

The motors in your Tinker Kit have two main parts: a small DC motor that spins quickly and a plastic gearbox that
gears down that output from the hobby motor so that it is slower but stronger, allowing it to move your robot. The
motors have a clever design so that you can attach things that you want to spin fast (like a small fan or flag) to the

SparkFun RedBoard Qwiic

DEV-15123

Breadboard - Self-Adhesive (White)

PRT-12002

Hobby Gearmotor - 140 RPM (Pair)

ROB-13302

SparkFun Motor Driver - Dual TB6612FNG (with
Headers)

ROB-14450

Jumper Wires Standard 7" M/M - 30 AWG (30
Pack)

PRT-11026

https://learn.sparkfun.com/tutorials/motors-and-selecting-the-right-one
https://www.sparkfun.com/products/15123
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/15123
https://www.sparkfun.com/products/12002
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/12002
https://www.sparkfun.com/products/13302
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/13302
https://www.sparkfun.com/products/14450
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14450
https://www.sparkfun.com/products/11026
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/11026

hobby motor, and things that you want to be strong (like a wheel) to the plastic axle sticking out the side of the
motor.

Inside the hobby motor are coils of wire that generate magnetic fields when electricity flows through them. When
power is supplied to these electromagnets, they spin the drive shaft of the motor.

TB6612FNG Motor Driver

If you switch the direction of current through a motor by swapping the positive and negative leads, the motor will
spin in the opposite direction. Motor controllers contain a set of switches (called an H-bridge) that let you easily
control the direction of one or more motors. The TB6612FNG Motor Driver takes commands for each motor over
three wires (two wires control direction, and one controls speed), then uses these signals to control the current
through two wires attached to your motor.

New Concepts
Voltage In (VIN)

https://cdn.sparkfun.com/assets/parts/1/0/5/6/1/13302-01b.jpg
https://learn.sparkfun.com/tutorials/tb6612fng-hookup-guide
https://cdn.sparkfun.com/assets/parts/1/2/4/8/2/14450-01.jpg

This circuit utilizes the VIN pin found with the other power pins. The VIN pin outputs a voltage that varies based on
whatever voltage the RedBoard is powered with. If the RedBoard is powered through the USB port, then the
voltage on VIN will be about 4.6--5V. However, if you power the RedBoard through the barrel jack (highlighted in
the picture below), the VIN pin will reflect that voltage. For example, if you were to power the barrel jack with 9V,
the voltage out on VIN would also be 9V.

Integrated Circuits (ICs) and Breakout Boards

An Integrated Circuit (IC) is a collection of electronic components --- resistors, transistors, capacitors, etc. --- all
stuffed into a tiny chip and connected together to achieve a common goal. They come in all sorts of flavors,
shapes and sizes. The chip that powers the RedBoard, the ATMega328, is an IC. The chip on the motor driver, the
TB6612FNG, is another IC, one designed to control motors, referred to as an H-bridge.

The guts of an integrated circuit, visible after removing the top.

Integrated circuits are often too small to work with by hand. To make working with ICs easier and to make them
breadboard-compatible, they are often added to a breakout board, which is a printed circuit board that connects all
the IC's tiny legs to larger ones that fit in a breadboard. The motor driver board in your kit is an example of a
breakout board.

Hardware Hookup

Polarized
Components

Pay special attention to the component’s markings indicating how to place it on the breadboard.
Polarized components can only be connected to a circuit in one direction.



https://learn.sparkfun.com/tutorials/connector-basics#power-connectors
https://cdn.sparkfun.com/assets/learn_tutorials/6/3/6/VIN2.jpg
https://learn.sparkfun.com/tutorials/integrated-circuits
https://en.wikipedia.org/wiki/H_bridge
https://cdn.sparkfun.com/assets/7/a/6/9/c/51c0d009ce395feb33000000.jpg
https://learn.sparkfun.com/tutorials/pcb-basics

Most ICs have polarity and usually have a polarity marking in one of the corners. The motor driver is no exception.
Be sure to insert the motor driver as indicated in the circuit diagrams. The motor driver pins are shown in the
image below.

Each pin and its function is covered in the table below.

Pin Label Function Power/Input/Output
 Notes

VM Motor Voltage Power This is where you provide power for the motors
(2.2V to 13.5V)

VCC Logic Voltage Power This is the voltage to power the chip and talk to the
microcontroller (2.7V to 5.5V)

GND Ground Power Common Ground for both motor voltage and logic
voltage (all GND pins are connected)

STBY Standby Input Allows the H-bridges to work when high (has a
pulldown resistor so it must actively be pulled high)

AIN1/BIN1 Input 1 for
channels A/B

Input One of the two inputs that determines the direction

AIN2/BIN2 Input 2 for
channels A/B

Input One of the two inputs that determines the direction

PWMA/PWMB PWM input for
channels A/B

Input PWM input that controls the speed

A01/B01 Output 1 for
channels A/B

Output One of the two outputs to connect the motor

A02/B02 Output 2 for
channels A/B

Output One of the two outputs to connect the motor

https://cdn.sparkfun.com//assets/parts/1/2/4/8/2/14450a-02.jpg

When you're finished with the circuit, removing the motor driver from the breadboard can be difficult due to its
numerous legs. To make this easier, use the a screwdriver as a lever to gently pry it out. Be careful not to bend the
legs as you remove it by slowly lifting the motor driver off the breadboard from each side.

The motors are also polarized. However, motors are unique in that they will still work when the two connections
are reversed. They will just spin in the opposite direction when hooked up backward. To keep things simple,
always think of the red wire as positive (+) and the black wire as negative (-).

Last, the switch is not polarized. It works the same no matter its orientation.

Ready to start hooking everything up? Check out the circuit diagram and hookup table below to see how
everything is connected.

Circuit Diagram

Having a hard time seeing the circuit? Click on the image for a closer look.

Hookup Table

Component RedBoard Breadboard Breadboard Breadboard

Jumper Wire 5V 5V Rail (+)

Jumper Wire GND GND Rail (-)

https://cdn.sparkfun.com/assets/learn_tutorials/7/1/9/RemovingMotorDriverfromBreadboard.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/6/3/6/motorPolarity.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/1/9/9/2/Tinker_Kit_Circuit10-Fritzing.jpg

Jumper Wire 5V Rail (+) 5V Rail (+)

Jumper Wire GND Rail (-) GND Rail (-)

Jumper Wire VIN A1

Motor Driver C1-C8 (VM on C1) G1-G8 (PWMA on G1)

Jumper Wire A2 5V Rail (+)

Jumper Wire A3 GND Rail (-)

Jumper Wire Digital Pin 8 J5

Jumper Wire Digital Pin 9 J6

Jumper Wire Digital Pin 10 J7

Jumper Wire J4 5V Rail (+)

Jumper Wire Digital Pin 11 J1

Jumper Wire Digital Pin 12 J2

Jumper Wire Digital Pin 13 J3

Motor A4 (Red +) A5 (Black -)

In the table, polarized components are shown with a warning triangle and the whole row highlighted yellow.

Open the Sketch

Open the example code from your Arduino sketchbook or copy and paste the following code into the Arduino IDE.
Hit upload, and see what happens!





https://learn.sparkfun.com/tutorials/polarity

/*

SparkFun Tinker Kit

Circuit 10: Motor Basics

Learn how to control one motor with the motor driver.

This sketch was written by SparkFun Electronics, with lots of help from the Arduino community.

This code is completely free for any use.

View circuit diagram and instructions at: https://learn.sparkfun.com/tutorials/activity-guide-fo
r-sparkfun-tinker-kit/circuit-10-motor-basics

Download drawings and code at: https://github.com/sparkfun/SparkFun_Tinker_Kit_Code/

*/

//PIN VARIABLES

//the motor will be controlled by the motor A pins on the motor driver

const int AIN1 = 13; //control pin 1 on the motor driver for the right motor

const int AIN2 = 12; //control pin 2 on the motor driver for the right motor

const int PWMA = 11; //speed control pin on the motor driver for the right motor

//VARIABLES

int motorSpeed = 0; //starting speed for the motor

void setup() {

 //set the motor contro pins as outputs

 pinMode(AIN1, OUTPUT);

 pinMode(AIN2, OUTPUT);

 pinMode(PWMA, OUTPUT);

}

void loop() {

 //drive motor forward (positive speed)

 digitalWrite(AIN1, HIGH); //set pin 1 to high

 digitalWrite(AIN2, LOW); //set pin 2 to low

 analogWrite(PWMA, 255); //now that the motor direction is set, drive it at max
speed

 delay(3000);

 //drive motor backward (negative speed)

 digitalWrite(AIN1, LOW); //set pin 1 to low

 digitalWrite(AIN2, HIGH); //set pin 2 to high

 analogWrite(PWMA, 255); //now that the motor direction is set, drive it at max
speed

 delay(3000);

 //stop motor

 digitalWrite(AIN1, LOW); //set pin 1 to low

 digitalWrite(AIN2, LOW); //set pin 2 to low

 analogWrite(PWMA, 0); //now that the motor direction is set, stop motor

 delay(3000);

}

What You Should See

After uploading, the motor will spin in one direction at the maximum speed available (255) for three seconds. Then
the motor will spin the other direction at the maximum speed available (255) for another three seconds. Finally the
motor will stop for three seconds. Adding a piece of tape to the motor shaft makes it easier to see it spinning.

We slowed the motor speed down a bit to show it better here. Your motor should spin much faster.

Program Overview

1. Spin motor in one direction at maximum speed for 3 seconds.
2. Spin motor in the opposite direction at maximum speed for 3 seconds.
3. Stop spinning the motor for 3 seconds
4. Repeat.

Code to Note

Code Description

Direction:

digitalWrite(AIN1,
HIGH);

digitalWrite(AIN2,
LOW);

digitalWrite() on pins AIN1 and AIN2 sets the direction for the motor to spin on
motor connected to channel A. When one pin is HIGH and the other is LOW , the motor
will spin in one direction. The motor will spin the other direction when the logic is
reversed. Setting both pins to LOW will stop the motor.

Speed:
analogWrite(PWMA,
255);

analogWrite() on the PWMA pin will tell the motor to move at a certain speed. The
value must be a value between 0 and 255.

Coding Challenges

Challenge Description

Change
speed

Change the code so that the motor speed can spin at a slower rate.

Add
another
motor

Try wiring the second motor and making both motors spin.

Build a
robot

Attach the circuit and mount the motors to a box. Then add wheels to the motors to build a robot.
Once the robot is built, try changing the code so that the motors move forward, backward, or spin.

Troubleshooting

https://cdn.sparkfun.com/assets/learn_tutorials/1/9/9/2/Tinker_Kit_Circuit10-Demo.gif
https://www.sparkfun.com/products/13259

Problem Solution

Motor
not
spinning

Check the wiring to the motor driver. There are a lot of connections, and it’s easy to mix one of them
up with another. If it is still not working, you can test the B channel by moving you motor. (Black wire
to A6, Red wire to A7). You’ll need to change the code as well.

Still not
working?

Jumper wires unfortunately can go "bad" from getting bent too much. The copper wire inside can
break, leaving an open connection in your circuit. If you are certain that your circuit is wired
correctly and that your code is error-free and uploaded but you are still encountering issues, try
replacing one or more of the jumper wires for the component that is not working.

Circuit 11: Driving a Motor w/ Inputs
It’s remote control time! In this circuit, you’ll use a motor driver to control the speed and direction of two motors.
You will also learn how to read multiple pieces of information from one serial command so that you can use the
Serial Monitor to tell the robot what direction to move in and how far to move.

Parts Needed

You will need the following parts:

1x Breadboard
1x SparkFun RedBoard
18x Jumper Wires
1x TB6612FNG Motor Driver (w/ Headers)
1x Hobby Gearmotor
1x Switch

Didn't Get the Tinker Kit?

If you are conducting this experiment and didn't get the Tinker Kit, we suggest using these parts:

SparkFun RedBoard Qwiic Breadboard - Self-Adhesive (White)

https://cdn.sparkfun.com/assets/learn_tutorials/1/9/9/2/Tinker_Kit_Circuit11.jpg
https://www.sparkfun.com/products/15123
https://www.sparkfun.com/products/15123
https://www.sparkfun.com/products/12002
https://www.sparkfun.com/products/12002

New Concepts
Switch

A switch is a component that controls the open-ness or closed-ness of an electric circuit. Just like the momentary
buttons used in earlier circuits, a switch can only exist in one of two states: open or closed. However, a switch is
different in that it will stay in the position it was last in until it is switched again.


DEV-15123 
PRT-12002

Hobby Gearmotor - 140 RPM (Pair)

ROB-13302

SparkFun Motor Driver - Dual TB6612FNG (with
Headers)

ROB-14450

Jumper Wires Standard 7" M/M - 30 AWG (30
Pack)

PRT-11026

Mini Power Switch - SPDT

COM-00102

https://learn.sparkfun.com/tutorials/switch-basics
https://learn.sparkfun.com/static/bubbles/
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/13302
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/13302
https://www.sparkfun.com/products/14450
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14450
https://www.sparkfun.com/products/11026
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/11026
https://www.sparkfun.com/products/102
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/102

Hardware Hookup

Polarized
Components

Pay special attention to the component’s markings indicating how to place it on the breadboard.
Polarized components can only be connected to a circuit in one direction.

Ready to start hooking everything up? Check out the circuit diagram and hookup table below to see how
everything is connected.

Circuit Diagram

Having a hard time seeing the circuit? Click on the image for a closer look.

Hookup Table

Component RedBoard Breadboard Breadboard Breadboard

Jumper Wire 5V 5V Rail (+)

Jumper Wire GND GND Rail (-)

Jumper Wire 5V Rail (+) 5V Rail (+)

Jumper Wire GND Rail (-) GND Rail (-)

Jumper Wire VIN A1

Motor Driver C1-C8 (VM on C1) G1-G8 (PWMA on G1)

Jumper Wire A2 5V Rail (+)





https://cdn.sparkfun.com//assets/parts/9/5/00102-02-L.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/1/9/9/2/Tinker_Kit_Circuit11-Fritzing.jpg

Jumper Wire A3 GND Rail (-)

Jumper Wire Digital Pin 8 J5

Jumper Wire Digital Pin 9 J6

Jumper Wire Digital Pin 10 J7

Jumper Wire J4 5V Rail (+)

Jumper Wire Digital Pin 11 J1

Jumper Wire Digital Pin 12 J2

Jumper Wire Digital Pin 13 J3

Motor A4 (Red +) A5 (Black -)

Switch F25 F26 F27

Jumper Wire I26 GND Rail (-)

Jumper Wire Digital Pin 7 I27

In the table, polarized components are shown with a warning triangle and the whole row highlighted yellow.

Open the Sketch

Open the example code from your Arduino sketchbook or copy and paste the following code into the Arduino IDE.
Hit upload, and see what happens!



https://learn.sparkfun.com/tutorials/polarity

/*

SparkFun Tinker Kit

Circuit 11: Driving a Motor w/ Inputs

Learn how to control one motor with the motor driver with a switch and input from a serial monit
or.

This sketch was written by SparkFun Electronics, with lots of help from the Arduino community.

This code is completely free for any use.

View circuit diagram and instructions at: https://learn.sparkfun.com/tutorials/activity-guide-fo
r-sparkfun-tinker-kit

Download drawings and code at: https://github.com/sparkfun/SparkFun_Tinker_Kit_Code/

*/

//PIN VARIABLES

//the motor will be controlled by the motor A pins on the motor driver

const int AIN1 = 13; //control pin 1 on the motor driver for the right motor

const int AIN2 = 12; //control pin 2 on the motor driver for the right motor

const int PWMA = 11; //speed control pin on the motor driver for the right motor

int switchPin = 7; //switch to turn the robot on and off

//VARIABLES

int motorSpeed = 0; //starting speed for the motor

void setup() {

 pinMode(switchPin, INPUT_PULLUP); //set this as a pullup to sense whether the switch is flip
ped

 //set the motor contro pins as outputs

 pinMode(AIN1, OUTPUT);

 pinMode(AIN2, OUTPUT);

 pinMode(PWMA, OUTPUT);

 Serial.begin(9600); //begin serial communication with the computer

 Serial.println("Enter motor speed (0-255)... "); //Prompt to get input in the serial monito
r.

}

void loop() {

 if (Serial.available() > 0){ //if the user has entered something in the serial monito
r

 motorSpeed = Serial.parseInt(); //set the motor speed equal to the number in the serial
 message

 Serial.print("Motor Speed: "); //print the speed that the motor is set to run at

 Serial.println(motorSpeed);

 }

 if(digitalRead(7) == LOW){ //if the switch is on...

 spinMotor(motorSpeed);

 } else{ //if the switch is off...

 spinMotor(0); //turn the motor off
 }

}

/**/

void spinMotor(int motorSpeed) //function for driving the right motor

{

 if (motorSpeed > 0) //if the motor should drive forward (posit
ive speed)

 {

 digitalWrite(AIN1, HIGH); //set pin 1 to high

 digitalWrite(AIN2, LOW); //set pin 2 to low

 }

 else if (motorSpeed < 0) //if the motor should drive backwar (negat
ive speed)

 {

 digitalWrite(AIN1, LOW); //set pin 1 to low

 digitalWrite(AIN2, HIGH); //set pin 2 to high

 }

 else //if the motor should stop

 {

 digitalWrite(AIN1, LOW); //set pin 1 to low

 digitalWrite(AIN2, LOW); //set pin 2 to low

 }

 analogWrite(PWMA, abs(motorSpeed)); //now that the motor direction is set, dri
ve it at the entered speed

}

What You Should See

When you flip the switch, the motor will turn on and spin at the speed set by the motor speed variable (default is
0). By opening the serial monitor and sending numbers, you can change the speed of the motor. Any number from
about 130 to 255 or -130 to -255 will work, though changes in the speed will be hard to notice. Send the number 0
to stop the motor. Adding a piece of tape to the motor shaft makes it easier to see it spinning.

Program Overview

1. Check to see if a command has been sent through the Serial Monitor. If a command has been sent, then set
the motor speed to the number that was sent over the Serial Monitor.

https://cdn.sparkfun.com/assets/learn_tutorials/1/9/9/2/Tinker_Kit_Circuit11-Demo.gif

2. Check to see if the switch is ON or OFF.
a. If the switch is ON, drive the motor at the motor speed.
b. If the
switch is OFF, stop the motor.

Code to Note

Code Description

Parsing Integers:

Serial.parseInt();

parseInt() receives integer numbers from the serial monitor. It returns the value of the
number that it receives, so you can use it like a variable.

Serial Available:

Serial.available();

Serial.available() checks how many bytes of data are being sent to the RedBoard. If it
is greater than 0, then a message has been sent. It can be used in an if statement to
run code only when a command has been received.

Coding Challenges

Challenge Description

Make the switch
change directions

Change the code so that the position of the switch changes the direction of the
motor instead of turning it on and off.

Replace the switch with
a button

Try wiring a button into the circuit instead of the sliding switch. Now the motor only
turns on when you push the button.

Replace the switch with
a sensor

Try changing the code so that the motor is activated by another sensor, like the
photoresistor.

Troubleshooting

Problem Solution

Motor
not
spinning

Check the wiring to the motor driver. There are a lot of connections, and it’s easy to mix one of them
up with another. If it is still not working, you can test the B channel by moving you motor. (Black wire
to A6, Red wire to A7). You’ll need to change the code as well.

Motor
spins but
then
stops

In the Serial Monitor, make sure you have No line ending selected in the drop down menu next to
the Baud Rate drop down menu.

Switch
not
working

Make sure that you are hooked up to the middle pin and one side pin on the switch.

Still not
working?

Jumper wires unfortunately can go "bad" from getting bent too much. The copper wire inside can
break, leaving an open connection in your circuit. If you are certain that your circuit is wired
correctly and that your code is error-free and uploaded but you are still encountering issues, try
replacing one or more of the jumper wires for the component that is not working.

https://www.arduino.cc/en/Reference/ParseInt
https://www.arduino.cc/en/Serial/Available

Resources and Going Further
For more information about the Tinker Kit, check out the resources below:

GitHub Code Repo
SFE Fritzing GitHub Repo

Now that you've successfully got your Tinker Kit up and running, it's time to incorporate it into your own project!
There are tons of sensors and shields you can hookup to an Arduino that will help take your projects to the next
level. Here's some further reading that may help you along in learning more about the world of electronics.

For more inspiration and ideas for working, check out the following tutorials. You may require additional parts to
get these circuits functioning.

SIK Keyboard Instrument
We can use the parts and concepts in the SparkFun
Invetor's Kit to make a primitive keyboard instrument.

Measuring Internal Resistance of Batteries
Classroom STEM activity that has students build a
battery from a lemon, measure the open and closed
circuit voltages, and determine the battery's internal
resistance.

Light-Seeking Robot
We use parts from the SparkFun Inventor's Kit v4.0 to
create a light-seeking robot that mimics the behavior of
single-celled organisms.

Clap On Lamp
Modify a simple desk lamp to respond to a double clap
(or other sharp noise) using parts from the SparkFun
Inventor's Kit v4.0.

https://github.com/sparkfun/SparkFun_Tinker_Kit_Code/tree/vF2.0
https://github.com/sparkfun/Fritzing_Parts
https://learn.sparkfun.com/tutorials/sik-keyboard-instrument
https://learn.sparkfun.com/tutorials/measuring-internal-resistance-of-batteries
https://learn.sparkfun.com/tutorials/light-seeking-robot
https://learn.sparkfun.com/tutorials/clap-on-lamp
https://learn.sparkfun.com/tutorials/endless-runner-game

For more information on Arduino, check out these tutorials:

Arduino Resources and Curriculum
Choosing an Arduino for Your Project Guide
Arduino Shields
Installing Arduino
Installing an Arduino Library
Arduino Data Types

For more electrical engineering and hardware related tutorials, give these a read:

Engineering Essentials
Breadboards
Working with Wire
LilyPad Basics and Sewing with conductive thread
How to Power a Project

Interested in using the SparkFun Qwiic System to add other inputs and outputs to your project? Get started here:

We also have additional kits available that cover different microcontrollers, development environments, and
robotics.

Endless Runner Game
We make a simple side-scrolling endless runner game
using parts from the SparkFun Inventor's Kit v4.0.

SparkFun JetBot AI Kit v3.0 Powered by Jetson
Nano

KIT-18486

Raspberry Pi 3 B+ Starter Kit

KIT-15361

https://learn.sparkfun.com/resources/tags/arduino
https://learn.sparkfun.com/tutorials/choosing-an-arduino-for-your-project
https://learn.sparkfun.com/tutorials/arduino-shields-v2
https://learn.sparkfun.com/tutorials/installing-arduino-ide
https://learn.sparkfun.com/tutorials/installing-an-arduino-library
https://learn.sparkfun.com/tutorials/data-types-in-arduino
https://www.sparkfun.com/engineering_essentials
https://learn.sparkfun.com/tutorials/how-to-use-a-breadboard
https://learn.sparkfun.com/tutorials/working-with-wire
https://learn.sparkfun.com/tutorials/lilypad-basics-e-sewing
https://learn.sparkfun.com/tutorials/how-to-power-a-project
https://learn.sparkfun.com/tutorials/endless-runner-game
https://www.sparkfun.com/qwiic
https://www.sparkfun.com/products/18486
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/18486
https://www.sparkfun.com/products/15361
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/15361

SparkFun Inventor's Kit for RedBot

ROB-12649

SparkFun Inventor's Kit for micro:bit

KIT-15228

SparkFun Inventor's Kit for Photon

KIT-14684

SparkFun Advanced Autonomous Kit for Sphero
RVR

KIT-15303

Johnny-Five Inventor's Kit

KIT-14604

SparkFun mbed Starter Kit

KIT-14458

https://www.sparkfun.com/products/12649
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/12649
https://www.sparkfun.com/products/15228
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/15228
https://www.sparkfun.com/products/14684
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14684
https://www.sparkfun.com/products/15303
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/15303
https://www.sparkfun.com/products/14604
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14604
https://www.sparkfun.com/products/14458
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14458

