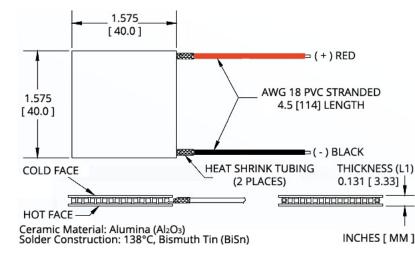
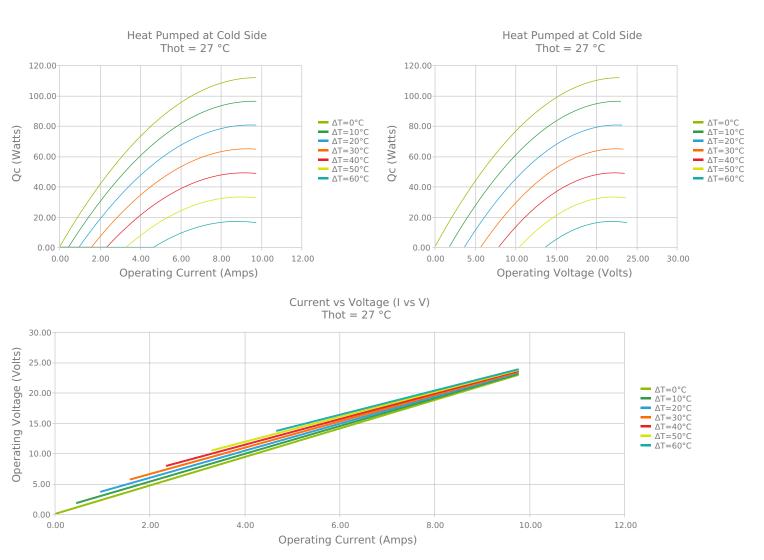
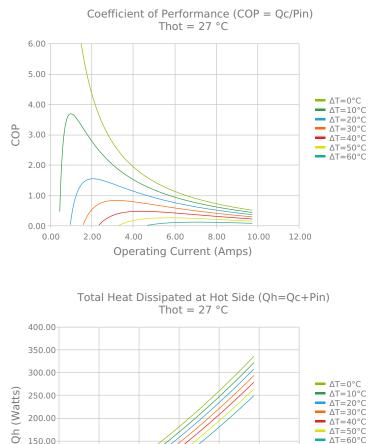
Laird Systems

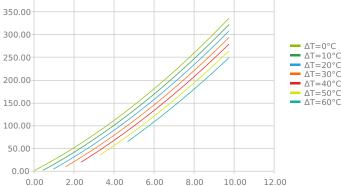

Ceramic Plate Series CP14-199-045-L1-EP-W400mm MFG Part Number: 387001715

Ceramic Plate Series Thermoelectric Cooler

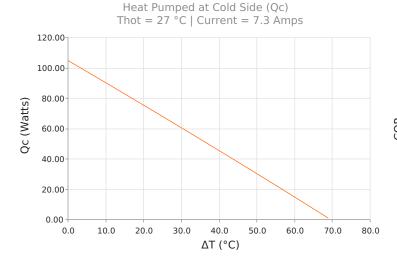
The CP14-199-045-L1-EP-W400mm is a high-performance and highly reliable standard Thermoelectric Cooler. Assembled with Bismuth Telluride semiconductor material and thermally conductive Aluminum Oxide ceramics. It has a maximum Qc of 111.8 Watts when $\Delta T = 0$ and a maximum ΔT of 70.5 °C at Qc = 0.

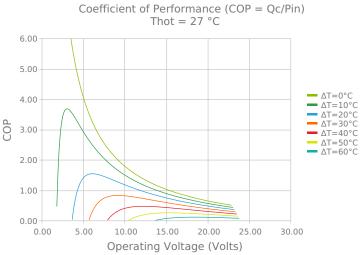

Features


- Compact geometric sizes
- DC Operation
- RoHS-compliant
- Applications
- Thermoelectric Coolers for Reagent Storage
 Thermoelectric Coolers for Handheld Cosmetic Lasers
- Cooling for Centrifuges
- Heads-Up Displays, Imaging Sensors
- Peltier Cooling for Machine Vision

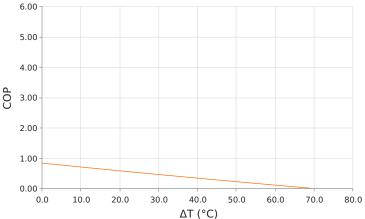


Note: Allow 0.020 in [0.5 mm] around perimeter of the thermoelectric cooler and lead wire attachment to accommodate sealant


ELECTRICAL AND THERMAL PERFORMANCE



Operating Current (Amps)



Total Heat Dissipated at Hot Side (Qh=Qc+Pin) Thot = 27 °C

Coefficient of Performance (COP = Qc/Pin) Thot = 27 °C | Current = 7.3 Amps

SPECIFICATIONS*

Hot Side Temperature	27.0 °C	35.0 °C	50.0 °C
$Qcmax (\Delta T = 0)$	111.8 Watts	115.2 Watts	121.2 Watts
ΔTmax (Qc = 0)	70.5°C	73.5°C	78.8°C
lmax (I @ ΔTmax)	8.6 Amps	8.6 Amps	8.5 Amps
Vmax (V @ ΔTmax)	21.7 Volts	22.6 Volts	24.1 Volts
Module Resistance	2.35 Ohms	2.44 Ohms	2.63 Ohms
Max Operating Temperature	80 °C		
Weight	25.0 gram(s)		

* Specifications reflect thermoelectric coefficients updated March 2020

FINISHING OPTIONS

Suffix	Thickness	Flatness / Parallelism	Hot Face	Cold Face	Lead Length
L1	$3.327 \pm 0.025 \text{ mm}$ $0.131 \pm 0.001 \text{ in}$	0.025 mm / 0.025 mm 0.001 in / 0.001 in	Lapped	Lapped	114.3 mm 4.50 in

SEALING OPTIONS

Suffix	Sealant	Color	Temp Range	Description
EP	Ероху	Black	-55 to 150°C	Low density syntactic foam epoxy encapsulant

NOTES

- 1. Max operating temperature: 80°C
- 2. Do not exceed Imax or Vmax when operating module
- 3. Reference assembly guidelines for recommended installation
- 4. Solder tinning also available on metallized ceramics

Any information furnished by Laird and its agents, whether in specifications, data sheets, product catalogues or otherwise, is believed to be (but is not warranted as being) accurate and reliable, is provided for information only and does not form part of any contract with Laird. All specifications are subject to change without notice. Laird assumes no responsibility and disclaims all liability for losses or damages resulting from use of or reliance on this information. All Laird products are sold subject to the Laird Terms and Conditions of sale (including Laird's limited warranty) in effect from time to time, a copy of which will be furnished upon request.

© Copyright 2020 Laird Thermal Systems GmbH. All Rights Reserved. Laird, Laird Technologies, Laird Thermal Systems, the Laird Logo, and other word marks and logos are trademarks or registered trademarks of Laird Limited or an affiliate company thereof. Other product or service names may be the property of third parties. Nothing herein provides a license under any Laird or any third party intellectual property rights.

Date: 04/24/2020