30 W, 8.0 - 11.0 GHz, GaN MMIC, Power Amplifiers

#### **Description**

Wolfspeed's CMPA801B030F is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) based monolithic microwave integrated circuit (MMIC). GaN has superior properties compared to silicon or gallium arsenide, including higher breakdown voltage, higher saturated electron drift velocity and higher thermal conductivity. GaN HEMTs also offer greater power density and wider bandwidths compared to Si and GaAs transistors. This MMIC is available in a 10-lead metal/ceramic flanged package for optimal electrical and thermal performance.



PN: CMPA801B030F Package Type: 440213

#### **Features**

- 8.0 11.0 GHz Operation
- 37 W P<sub>out</sub> typical 16 dB Power gain
- 36% Typical PAE
- 50 Ohm internally matched

### **Applications**

- Marine Radar
- Communications
- Satellite Communication Uplink

# Typical Performance Over 8.0 - 11.0 GHz ( $T_c = 85$ °C)

| Parameter                           | 8.0 GHz | 8.5 GHz | 9.0 GHz | 10.0 GHz | 11.0 GHz | Units |
|-------------------------------------|---------|---------|---------|----------|----------|-------|
| Small Signal Gain                   | 27      | 25      | 22      | 23       | 21       | dB    |
| Output Power <sup>1</sup>           | 31      | 30      | 28      | 25       | 24       | W     |
| Power Gain <sup>1</sup>             | 17      | 17      | 17      | 16       | 16       | dB    |
| Power Added Efficiency <sup>1</sup> | 39      | 39      | 36      | 28       | 33       | %     |

1. Measured in CMPA801B030F-AMP under  $P_{IN}$  = 28 dBm, 100  $\mu$ s pulse width, 10% duty.



#### **Absolute Maximum Ratings (not simultaneous)**

| Parameter                            | Symbol                       | Rating    | Units           | Conditions                                                       |
|--------------------------------------|------------------------------|-----------|-----------------|------------------------------------------------------------------|
| Drain-source Voltage                 | $V_{\scriptscriptstyle DSS}$ | 84        | V <sub>DC</sub> | 25°C                                                             |
| Gate-source Voltage                  | $V_{GS}$                     | -10, +2   | V <sub>DC</sub> | 25°C                                                             |
| Power Dissipation                    | P <sub>DISS</sub>            | 77        | W               |                                                                  |
| Storage Temperature                  | $T_{STG}$                    | -55, +150 | °C              |                                                                  |
| Operating Junction Temperature       | T <sub>J</sub>               | 225       | °C              |                                                                  |
| Maximum Forward Gate Current         | I <sub>GMAX</sub>            | 13        | mA              | 25°C                                                             |
| Soldering Temperature <sup>1</sup>   | T <sub>s</sub>               | 245       | °C              |                                                                  |
| Screw Torque                         | τ                            | 40        | in-oz           |                                                                  |
| Thermal Resistance, Junction to Case | $R_{_{	heta JC}}$            | 1.22      | °C/W            | Pulse Width = 100 μs, Duty Cycle = 10%, P <sub>DISS</sub> = 55 W |
| Thermal Resistance, Junction to Case | $R_{_{	heta JC}}$            | 1.80      | °C/W            | CW, P <sub>DISS</sub> = 55 W, 85 ° C                             |
| Case Operating Temperature           | T <sub>c</sub>               | -40, +130 | °C              | Pulse Width = 100 μs, Duty Cycle = 10%, P <sub>DISS</sub> = 55 W |
| Case Operating Temperature           | T <sub>c</sub>               | -40, +90  | °C              | CW, P <sub>DISS</sub> = 55 W                                     |

Note:

# **Electrical Characteristics** (Frequency = $8.0~\mathrm{GHz}$ - $11.0~\mathrm{GHz}$ unless otherwise stated; $T_{\rm c} = 25~\mathrm{^{\circ}C}$ )

| Characteristics                      | Symbol          | Min. | Тур. | Max. | Units | Conditions                                                                                                                       |
|--------------------------------------|-----------------|------|------|------|-------|----------------------------------------------------------------------------------------------------------------------------------|
| DC Characteristics <sup>1</sup>      |                 |      |      |      |       |                                                                                                                                  |
| Gate Threshold                       | $V_{GS(TH)}$    | -3.8 | -3.0 | -2.3 | V     | $V_{DS} = 10 \text{ V, I}_{D} = 13 \text{ mA}$                                                                                   |
| Gate Quiscent Voltage                | $V_{GS(Q)}$     | -    | -2.7 | _    | V     | $V_{DS} = 28 \text{ V, } I_{D} = 800 \text{ mA}$                                                                                 |
| Saturated Drain Current <sup>2</sup> | I <sub>DS</sub> | 9.5  | 13.2 | _    | Α     | $V_{DS} = 6.0 \text{ V}, V_{GS} = 2.0 \text{ V}$                                                                                 |
| Drain-Source Breakdown<br>Voltage    | $V_{BD}$        | 84   | -    | _    | V     | V <sub>GS</sub> = -8 V, I <sub>D</sub> = 13 mA                                                                                   |
| RF Characteristics <sup>3</sup>      |                 |      |      |      |       |                                                                                                                                  |
| Small Signal Gain                    | S21             | -    | 23   | _    | dB    | $V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}, Frequency = 8-11 GHz$                                                           |
| Input Return Loss                    | S11             | -    | -3.7 | _    | dB    | $V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}, Frequency = 8-11 GHz$                                                           |
| Output Return Loss                   | S22             | -    | -3.6 | _    | dB    | $V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}, Frequency = 8-11 GHz}$                                                          |
| Output Mismatch Stress               | VSWR            | -    | _    | 5:1  | Ψ     | No damage at all phase angles, $V_{DD}$ = 28 V, $I_{DQ}$ = 800 mA, Pulse Width = 100 $\mu$ s, Duty Cycle = 10%, $P_{OUT}$ = 30 W |

Notes:

 $<sup>^{1}</sup>$  Refer to the Application Note on soldering at www.wolfspeed.com/RF/Document-Library

 $<sup>^{\</sup>scriptscriptstyle 1}\,\text{Measured}$  on-wafer prior to packaging.

<sup>&</sup>lt;sup>2</sup> Scaled from PCM data.

 $<sup>^{\</sup>scriptscriptstyle 3}$  Measured in the CMPA801B030F-AMP.

# **Electrical Characteristics Continued...** ( $T_c = 25$ °C)

| Characteristics                    | Symbol            | Min. | Тур. | Max. | Units | Conditions                                                                                                      |
|------------------------------------|-------------------|------|------|------|-------|-----------------------------------------------------------------------------------------------------------------|
| RF Characteristics <sup>1, 2</sup> |                   |      |      |      |       |                                                                                                                 |
| Output Power                       | P <sub>out1</sub> | -    | 45.4 | -    | dBm   | $V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}, \text{ Frequency} = 8.0 \text{ GHz}, P_{IN} = 28 \text{ dBm}$  |
| Output Power                       | P <sub>OUT2</sub> | -    | 45.8 | -    | dBm   | $V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}, \text{ Frequency} = 8.5 \text{ GHz}, P_{IN} = 28 \text{ dBm}$  |
| Output Power                       | Роитз             | -    | 45.9 | -    | dBm   | $V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}, \text{ Frequency} = 9.0 \text{ GHz}, P_{IN} = 28 \text{ dBm}$  |
| Output Power                       | P <sub>OUT4</sub> | -    | 45.9 | -    | dBm   | $V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}, \text{ Frequency} = 10.0 \text{ GHz}, P_{IN} = 28 \text{ dBm}$ |
| Output Power                       | P <sub>outs</sub> | -    | 45.3 | -    | dBm   | $V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}, \text{ Frequency} = 11.0 \text{ GHz}, P_{IN} = 28 \text{ dBm}$ |
| Power Gain                         | $G_{_1}$          | -    | 16.5 | -    | dB    | $V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}, \text{ Frequency} = 8.0 \text{ GHz}, P_{IN} = 28 \text{ dBm}$  |
| Power Gain                         | $G_{_{2}}$        | -    | 17.1 | -    | dB    | $V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}, \text{ Frequency} = 8.5 \text{ GHz}, P_{IN} = 28 \text{ dBm}$  |
| Power Gain                         | $G_3$             | -    | 16.4 | -    | dB    | $V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}, \text{ Frequency} = 9.0 \text{ GHz}, P_{IN} = 28 \text{ dBm}$  |
| Power Gain                         | $G_{_4}$          | -    | 15.8 | -    | dB    | $V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}, \text{ Frequency} = 10.0 \text{ GHz}, P_{IN} = 28 \text{ dBm}$ |
| Power Gain                         | G <sub>5</sub>    | -    | 16.9 | -    | dB    | $V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}, \text{ Frequency} = 11.0 \text{ GHz}, P_{IN} = 28 \text{ dBm}$ |
| Power Added Efficiency             | PAE <sub>1</sub>  | -    | 40.5 | -    | %     | $V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}, \text{ Frequency} = 8.0 \text{ GHz}, P_{IN} = 28 \text{ dBm}$  |
| Power Added Efficiency             | PAE <sub>2</sub>  | -    | 45.3 | _    | %     | $V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}, \text{ Frequency} = 8.5 \text{ GHz}, P_{IN} = 28 \text{ dBm}$  |
| Power Added Efficiency             | PAE <sub>3</sub>  | -    | 41.7 | -    | %     | $V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}, \text{ Frequency} = 9.0 \text{ GHz}, P_{IN} = 28 \text{ dBm}$  |
| Power Added Efficiency             | PAE <sub>4</sub>  | -    | 36.0 | -    | %     | $V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}, \text{ Frequency} = 10.0 \text{ GHz}, P_{IN} = 28 \text{ dBm}$ |
| Power Added Efficiency             | PAE <sub>5</sub>  | -    | 39.8 | -    | %     | $V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}, \text{ Frequency} = 11.0 \text{ GHz}, P_{IN} = 28 \text{ dBm}$ |
| Pulse Amplitude Droop              | D                 | -    | 0.1  | -    | dB    | $V_{DD}$ = 28 V, $I_{DQ}$ = 800 mA, Frequency = 8.5 - 11.0 GHz, $P_{IN}$ = 28 dBm                               |

Notes:

# **Electrostatic Discharge (ESD) Classifications**

| Parameter           | Symbol | Class              | Test Methodology    |
|---------------------|--------|--------------------|---------------------|
| Human Body Model    | НВМ    | 1A (> 250 V)       | JEDEC JESD22 A114-D |
| Charge Device Model | CDM    | II (200 V < 500 V) | JEDEC JESD22 C101-C |

 $<sup>^{1}</sup>$  Pulse Width = 100  $\mu s$  , Duty Cycle = 10 %.

<sup>&</sup>lt;sup>2</sup> Measured in CMPA801B030F-AMP.

#### **Typical Performance**

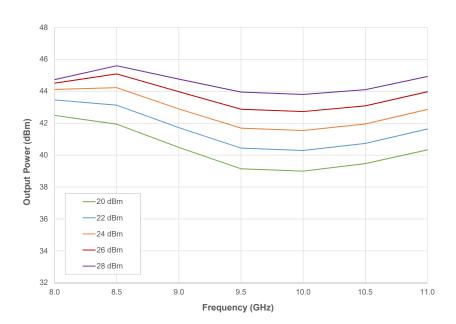

-40

Figure 1. - Small Signal Gain and Return Loss vs. Frequency of the CMPA801B030F as Measured in Circuit CMPA801B030F-AMP Demonstration Amplifier  $V_{DD}=28\ V,\ I_{DQ}=800\ mA$ 

40 40 30 30 20 20 Return Loss (dB) 10 Gain (dB) -10 -20 -20 S21 -30 -30 -S11 S22

Frequency (GHz)

$$V_{DD} = 28 \text{ V}, I_{DO} = 800 \text{ mA}$$



-40 11.0

Figure 3. - CW Gain vs Frequency as a Function of Input Power of the CMPA801B030F as Measured in Demonstration Amplifier Circuit CMPA801B030F-AMP

$$V_{DD} = 28 \text{ V}, I_{DO} = 800 \text{ mA}$$

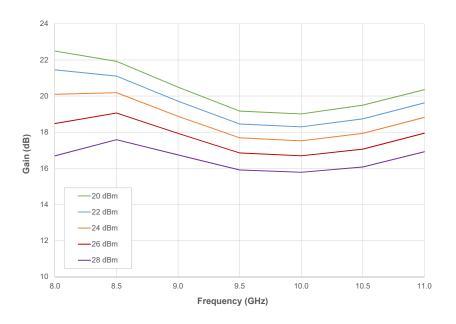



Figure 4. - CW Power Added Efficiency vs Frequency as a Function of Input Power of the CMPA801B030F as Measured in Demonstration Amplifier Circuit CMPA801B030F-AMP

$$V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}$$

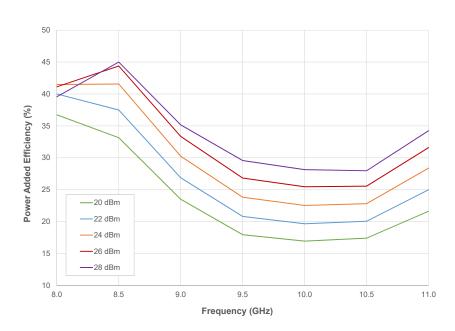



Figure 5. - Pulsed Output Power vs Frequency as a Function of Input Power of the CMPA801B030F as Measured in Demonstration Amplifier Circuit CMPA801B030F-AMP

$$V_{DD}$$
 = 28 V,  $I_{DO}$  = 800 mA, Pulse Width = 100  $\mu$ s, Duty Cycle = 10%

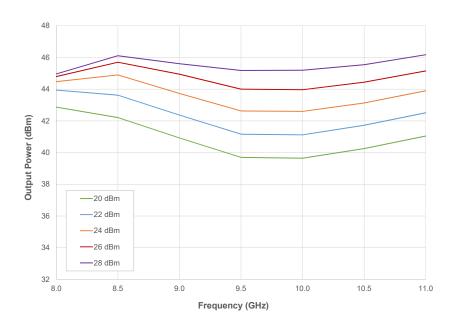



Figure 6. - Pulsed Gain vs Frequency as a Function of Input Power of the CMPA801B030F as Measured in Demonstration Amplifier Circuit CMPA801B030F-AMP

$$V_{DD}$$
 = 28 V,  $I_{DO}$  = 800 mA, Pulse Width = 100  $\mu$ s, Duty Cycle = 10%

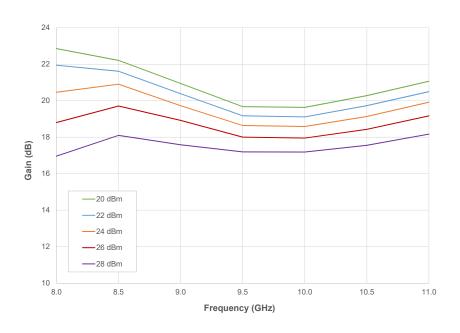



Figure 7. - Pulsed Power Added Efficiency vs Frequency as a Function of Input Power of the CMPA801B030F as Measured in Demonstration Amplifier Circuit CMPA801B030F-AMP

$$V_{DD}$$
 = 28 V,  $I_{DO}$  = 800 mA, Pulse Width = 100  $\mu$ s, Duty Cycle = 10%

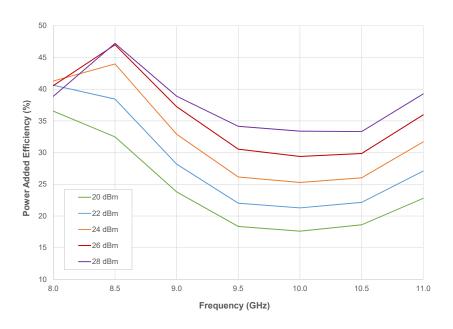



Figure 8. - CW Output Power vs Input Power as a Function of Frequency of the CMPA801B030F as Measured in Demonstration Amplifier Circuit CMPA801B030F-AMP

$$V_{DD} = 28 \text{ V}, I_{DO} = 800 \text{ mA}$$

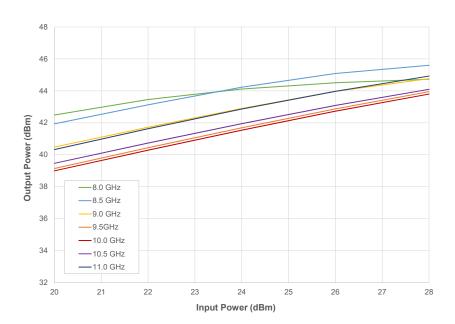



Figure 9. - CW Gain vs Input Power as a Function of Frequency of the CMPA801B030F as Measured in Demonstration Amplifier Circuit CMPA801B030F-AMP  $V_{_{DD}}=28~V,~I_{_{DQ}}=800~\text{mA}$ 

$$V_{DD} = 28 \text{ V}, I_{DO} = 800 \text{ mA}$$

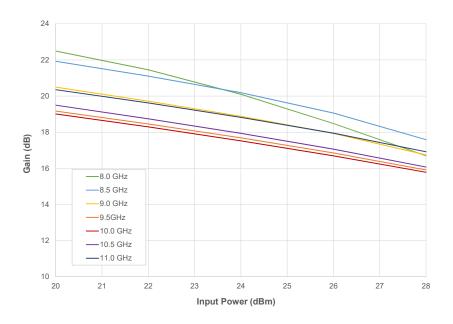



Figure 10. - CW Power Added Efficiency vs Input Power as a Function of Frequency of the CMPA801B030F as Measured in Demonstration Amplifier Circuit CMPA801B030F-AMP

$$V_{DD} = 28 \text{ V}, I_{DO} = 800 \text{ mA}$$

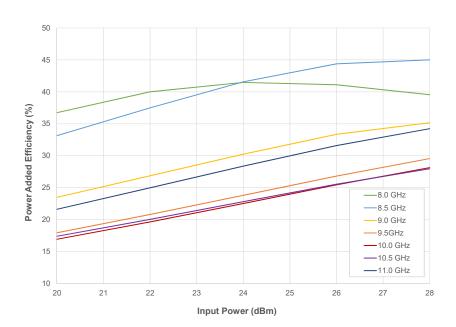



Figure 11. - Pulsed Output Power vs Input Power as a Function of Frequency of the CMPA801B030F as Measured in Demonstration Amplifier Circuit CMPA801B030F-AMP

$$V_{DD}$$
 = 28 V,  $I_{DO}$  = 800 mA, Pulse Width = 100  $\mu$ s, Duty Cycle = 10%

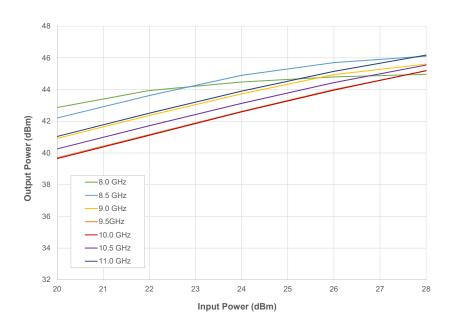
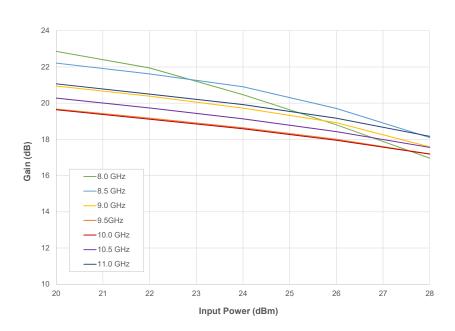
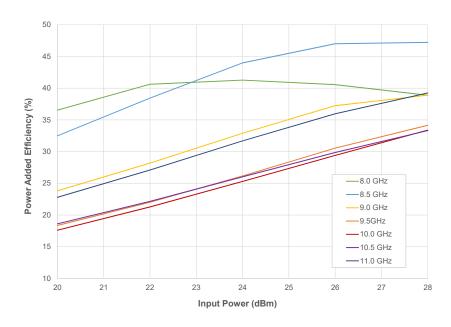




Figure 12. - Pulsed Gain vs Input Power as a Function of Frequency of the CMPA801B030F as Measured in Demonstration Amplifier Circuit CMPA801B030F-AMP


$$V_{DD}$$
 = 28 V,  $I_{DO}$  = 800 mA, Pulse Width = 100  $\mu$ s, Duty Cycle = 10%

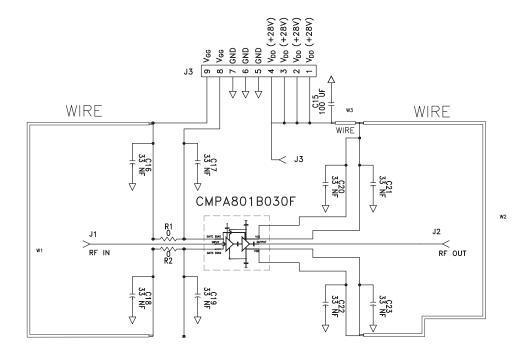


### **Typical Performance**

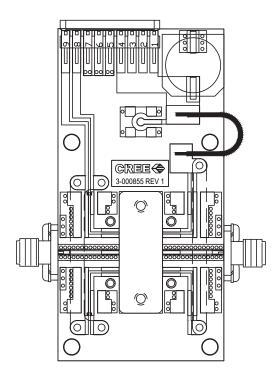
Figure 13. - Pulsed Power Added Efficiency vs Input Power as a Function of Frequency of the CMPA801B030F as Measured in Demonstration Amplifier Circuit CMPA801B030F-AMP

 $\rm V_{DD}$  = 28 V,  $\rm I_{DO}$  = 800 mA, Pulse Width = 100  $\mu s$ , Duty Cycle = 10%



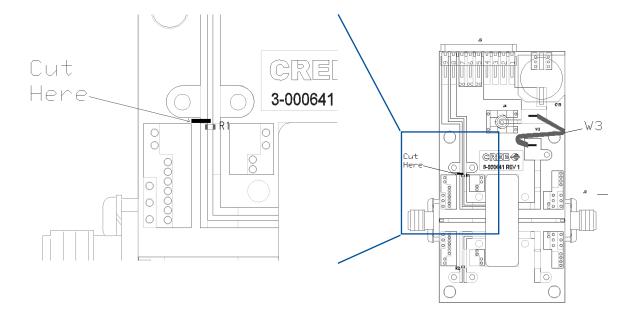

# **CMPA801B030F-AMP Demonstration Amplifier Circuit Bill of Materials**

| Designator | Description                                                    | Qty |
|------------|----------------------------------------------------------------|-----|
| C15        | CAP ELECT 100UF 80V AFK SMD                                    | 1   |
| C16-C23    | CAP,33000PF, 0805,100V, X7R                                    | 8   |
| R1, R2     | RES 0.0 OHM 1/16W 0402 SMD                                     | 2   |
| J1, J2     | CONN, SMA, PANEL MOUNT JACK, FLANGE, 4-HOLE, BLUNT POST, 20MIL | 2   |
| J4         | CONN, SMB, STRAIGHT JACK RECEPTACLE, SMT, 50 OHM, Au<br>PLATED | 1   |
| J3         | HEADER RT>PLZ .1CEN LK 9POS                                    | 1   |
| W1         | WIRE, BLACK, 22 AWG ~ 1.50"                                    | 1   |
| W2         | WIRE, BLACK, 22 AWG ~ 1.75"                                    | 1   |
| W3         | WIRE, BLACK, 22 AWG ~ 3.0"                                     | 1   |
| -          | PCB, TEST FIXTURE, TACONICS RF35P, 20 MILS, 440208 PKG         | 1   |
| -          | 2-56 SOC HD SCREW 3/16 SS                                      | 4   |
| -          | #2 SPLIT LOCKWASHER SS                                         | 4   |
| Q1         | Transistor CMPA801B030F                                        | 1   |

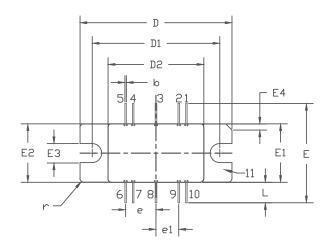

# **CMPA801B030F-AMP Demonstration Amplifier Circuit**

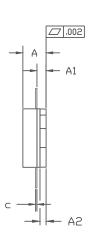


#### **CMPA801B030F-AMP Demonstration Amplifier Circuit Outline**




#### **CMPA801B030F-AMP Demonstration Amplifier Circuit Outline**





# CMPA801B030F-AMP Demonstration Amplifier Circuit Schematic

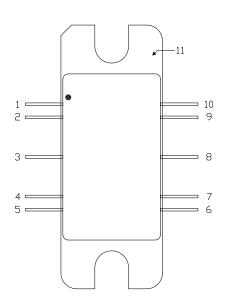
To configure the CMPA801B030F test fixture to enable independent  $V_{\rm G1}/V_{\rm G2}$  control of the device, a cut must be made to the microstrip line just above the R1 resistor as shown. Pin 9 will then supply  $V_{\rm G1}$  and Pin 8 will supply  $V_{\rm G2}$ .



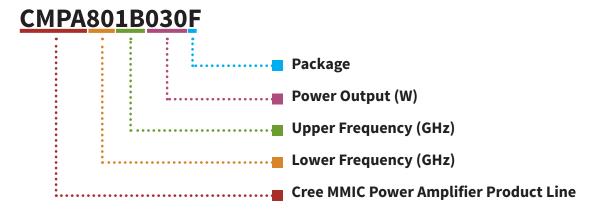
#### Product Dimensions CMPA801B030F (Package Type — 440213)






PIN 1: GATE BIAS 6: DRAIN BIAS 2: GATE BIAS 7: DRAIN BIAS 3: RF IN 4: GATE BIAS 9: DRAIN BIAS 5: GATE BIAS 10: DRAIN BIAS 10: DRAIN BIAS 11: SDURCE

#### NOTES:


- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M 1994.
- 2. CONTROLLING DIMENSION: INCH.
- 3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020" BEYOND EDGE OF LID.
- 4. LID MAY BE MISALIGNED TO THE BODY OF PACKAGE BY A MAXIMUM OF 0.008" IN ANY DIRECTION.

|     | INCHES    |           | MILLIMETERS |          | N   | IOTES   |
|-----|-----------|-----------|-------------|----------|-----|---------|
| DIM | MIN       | MAX       | MIN         | MAX      |     |         |
| Α   | 0.148     | 0.168     | 3.76        | 4.27     |     |         |
| A1  | 0.055     | 0.065     | 1.40        | 1.65     |     |         |
| A2  | 0.035     | 0.045     | 0.89        | 1.14     |     |         |
| b   | 0.01      | TYP       | 0.254       | TYP      |     | 10x     |
| С   | 0.007     | 0.009     | 0.18        | 0.23     |     |         |
| D   | 0.995     | 1.005     | 25.27       | 25.53    |     |         |
| D1  | 0.835     | 0.845     | 21.21       | 21.46    |     |         |
| D2  | 0.623     | 0.637     | 15.82       | 16.18    |     |         |
| E   | 0.653     | TYP       | 16.59 TYP   |          |     |         |
| E1  | 0.380     | 0.390     | 9.65        | 9.91     |     |         |
| E2  | 0.380     | 0.390     | 9.65        | 9.91     |     |         |
| E3  | 0.120     | 0.130     | 3.05        | 3.30     |     |         |
| E4  | 0.035     | 0.045     | 0.89        | 1.14     | 45° | CHAMFER |
| е   | 0.200 TYP |           | 5.08 TYP    |          |     | 4x      |
| e1  | 0.15      | 0.150 TYP |             | 3.81 TYP |     | 4x      |
| L   | 0.115     | 0.155     | 2.92        | 3.94     |     | 10x     |
| r   | 0.02      | 5 TYP     | .635        | TYP      |     | 3x      |

| Pin Number | Qty                   |  |  |  |
|------------|-----------------------|--|--|--|
| 1          | Gate Bias for Stage 2 |  |  |  |
| 2          | Gate Bias for Stage 2 |  |  |  |
| 3          | RF In                 |  |  |  |
| 4          | Gate Bias for Stage 1 |  |  |  |
| 5          | Gate Bias for Stage 1 |  |  |  |
| 6          | Drain Bias            |  |  |  |
| 7          | Drain Bias            |  |  |  |
| 8          | RF Out                |  |  |  |
| 9          | Drain Bias            |  |  |  |
| 10         | Drain Bias            |  |  |  |
| 11         | Source                |  |  |  |
|            |                       |  |  |  |



#### **Part Number System**



| Parameter                    | Value  | Units |
|------------------------------|--------|-------|
| Lower Frequency              | 8.0    | GHz   |
| Upper Frequency <sup>1</sup> | 11.0   | GHz   |
| Power Output                 | 30     | W     |
| Package                      | Flange | -     |

**Table 1. Note<sup>1</sup>:** Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.

| Character Code | Code Value                     |  |  |
|----------------|--------------------------------|--|--|
| A              | 0                              |  |  |
| В              | 1                              |  |  |
| С              | 2                              |  |  |
| D              | 3                              |  |  |
| E              | 4                              |  |  |
| F              | 5                              |  |  |
| G              | 6                              |  |  |
| Н              | 7                              |  |  |
| J              | 8                              |  |  |
| K              | 9                              |  |  |
| Examples:      | 1A = 10.0 GHz<br>2H = 27.0 GHz |  |  |

Table 2.

# **Product Ordering Information**

| Order Number | Description | Unit of Measure | Image |
|--------------|-------------|-----------------|-------|
| CMPA801B030F | GaN HEMT    | Each            |       |

CMPA801B030F-AMP

Test board with GaN HEMT installed

Each



For more information, please contact:

4600 Silicon Drive Durham, North Carolina, USA 27703 www.wolfspeed.com/rf

Sales Contact rfsales@cree.com

#### Notes & Disclaimer

Specifications are subject to change without notice. "Typical" parameters are the average values expected by Cree in large quantities and are provided for information purposes only. Cree products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death. No responsibility is assumed by Cree for any infringement of patents or other rights of third parties which may result from use of the information contained herein. No license is granted by implication or otherwise under any patent or patent rights of Cree.

 $@\ 2019-2020\ Cree,\ Inc.\ All\ rights\ reserved.\ Wolfspeed \ and\ the\ Wolfspeed\ logo\ are\ registered\ trademarks\ of\ Cree,\ Inc.\ Property of\ Cree,\ Property\ Cree,\ P$