NCP1522B Adjustable Output Voltage Step-Down Converter Evaluation Board User's Manual

ON Semiconductor®

http://onsemi.com

EVAL BOARD USER'S MANUAL

Overview

The NCP1522B step-down PWM DC-DC converter is optimized for portable applications powered from one cell Li-ion or three cell Alkaline/NiCd/NiMH batteries.

The part is available in adjustable output voltage versions ranging from 0.9 V to 3.3 V. It uses synchronous rectification to increase efficiency and reduce external part count. The device also has a built-in 3.0 MHz (nominal) oscillator

which reduces component size by allowing smaller inductors and capacitors. Automatic switching PWM/PFM mode offers improved system efficiency.

Additional features include integrated soft-start, cycle-by-cycle current limiting and thermal shutdown protection. The NCP1522B is available in space saving, low profile TSOP-5 and UDFN-6 packages.



Figure 1. Board Picture in TSOP-5

Figure 2. Board Picture in UDFN-6

MAXIMUM RATINGS (Note 1)

Rating	Symbol	Value	Unit
Minimum Voltage All Pins	V_{min}	-0.3	V
Maximum Voltage All Pins (Note 2)	V_{max}	7.0	V
Maximum Voltage EN1, EN2, FB, LX	V_{max}	V _{IN} + 0.3	V
Thermal Resistance Junction to Air TSOP-5 UDFN-6	$R_{ hetaja}$	300 260	°C/W
Operating Ambient Temperature Range	T _A	-40 to 85	°C
Storage Temperature Range	T _{stg}	-55 to 150	°C
Junction Operating Temperature	TJ	-40 to 125	°C
Latchup Current Maximum Rating T _A = 85°C (Note 4) Other Pins	L _u	±100	mA
ESD Withstand Voltage (Note 3) Human Body Model Machine Model	V _{esd}	2.0 200	kV V
Moisture Sensitivity Level (Note 5)	MSL	1	per IPC

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- 1. Maximum electrical ratings are defined as those values beyond which damage to the device may occur at TA = 25°C
- 2. According JEDEC standard JESD22-A108B
- This device series contains ESD protection and exceeds the following tests:
 Human Body Model (HBM) per JEDEC standard: JESD22–A114
 Machine Model (MM) per JEDEC standard: JESD22–A115
- Machine Model (MM) per JEDEC standard: JESD22–A115

 4. Latchup current maximum rating per JEDEC standard: JESD78.
- 5. JEDEC Standard: J-STD-020A.

ELECTRICAL CHARACTERISTICS

For Electrical Characteristic, please report to our NCP1522B datasheet available on our website, www.onsemi.com.

NCP1522B - BOARD CONNECTIONS

Symbol	Switch Descriptions						
INPUT POWER	· · · · · · · · · · · · · · · · · · ·						
V _{IN} +	This is the positive connection for power supply.						
V _{IN} -	This is the return connection for the power supply						
GND1, GND2	Ground clip						
SETUP							
ENABLE	ABLE To enable the buck converter, connect a shorting jumper between ENABLE-1 and ENABLE-2. To disable the buck converter, connect a shorting jumper between ENABLE-3 and ENABLE-2.						
SELECT	A shorting jumper must be used to select an output voltage of 1.2V, 1.5V or 1.8V						
OUTPUT POWER							
V _{OUT} +	This is the positive connection of the output voltage.						
V _{OUT} -	This is the return connection of the output voltage.						
TEST POINT							
TP_{VIN}	This is the test point of the input voltage.						
TP _{EN}	This is the test point of the enable pin.						
TP _{LX}	This is the test point of the inductor voltage.						
TP _{VOUT}	This is the test point of the output voltage.						

NCP1522B - BOARD SCHEMATIC

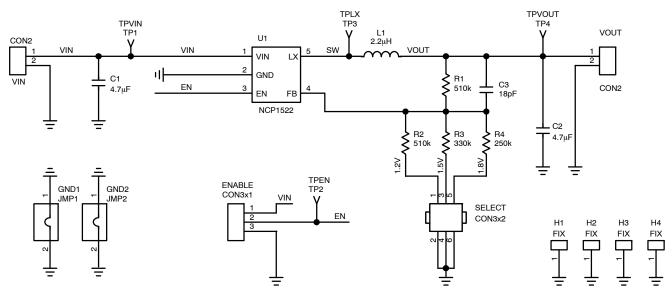


Figure 3. Board Schematic in TSOP-5

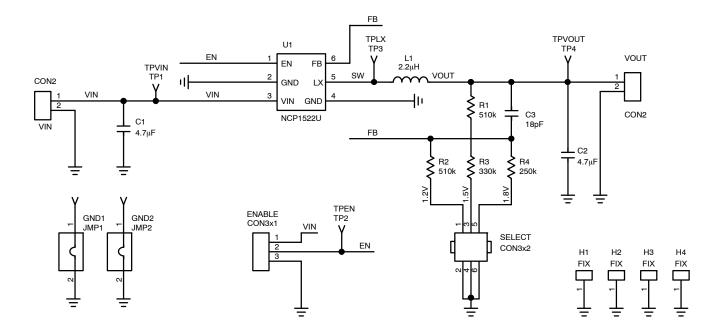


Figure 4. Board Schematic in UDFN-6

NCP1522B - TEST PROCEDURE

Equipment needed

- Power supply
- Digital Volt Meter
- Digital Amp Meter

Test

- 1. Jumper ENABLE should be open.
- 2. Jumper SELECT should be closed to 1.2 V.
- 3. Set the power supply to 3.6 V and the current limit of at least 800 mA.
- 4. Connect the power supply connector to connectors V_{IN} + and V_{IN} -. The DC current measurement on V_{IN} line should be around 0.3 μA .
- 5. Close ENABLE connector. The DC current measurement on Vin line should be around 55 μA.
- 6. Measure the output voltage between V_{OUT} + and V_{OUT} connectors. You should see around 1.2 V voltage operation.
- 7. Remove the ENABLE jumper. The DC current measurement on Vin line should be back around $0.3~\mu A$.

NCP1522B - BILL OF MATERIAL

Designator	Qty.	Description	Value	Tolerance	Foot- print	Manufacturer	Manufacturer Part Number
U1	1	IC, Converter, DC/DC	NA	NA	TSOP-5 UDFN	ON Semiconductor	NCP1522B NCP1522BU
C1	1	Ceramic capacitor	4.7μF, 10V, X5R	10%	0805	TDK	C1608X5R1A475
C2	1	Ceramic capacitor	10μF, 6.3V, X5R	10%	0603	TDK	C1608X5R0J105
C3	1	Ceramic capacitor	18pF, 50V, COG	5%	0603	TDK	C1608C0G1H180
R1, R2	2	SMD resistor	510k	1%	0603	std	std
R3	1	SMD resistor	330k	1%	0603	std	std
R4	1	SMD resistor	240k	1%	0603	std	std
L1	1	Inductor	2,2μΗ	30%	1210	Coilcraft	LPS3008-222NL
VIN, VOUT	4	Connector	NA	NA	NA	Kontek Comatel Cambion	3110014000500 160–1724–02–05–00
ENABLE	1	3 Pin Jumper Header	NA	NA	2,54mm	TYCO/AMP Molex / Waldom	5-826629-0 90120-0160
SELECT	1	3x2 Pin Jumper Header	NA	NA	2,54mm	TYCO/AMP Molex / Waldom	4731955180470 90131–0140
GND1, GND2	2	Jumper for GND	NA	NA	10,16mm	Harwin Molex / Waldom	D3082-01 90120-0160
TPEN, TPLX, TPVIN, TPVOUT	4	Test Point Type 3	NA	NA	φ1,60mm	Keystone	5010
РСВ	1	50.8mm x 50.8mm x 1mm, 4 Layers	NA	NA	NA	Any	TLS-P-004-A-1106-BR TLS-P-003-A-0207-BR

NCP1522B - PCB LAYOUT

Board reference: TLS-P-001-A-0107-BR

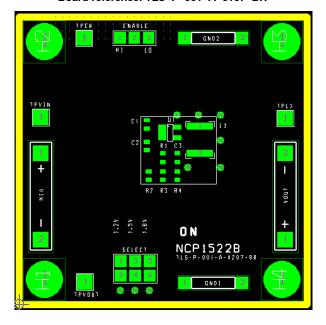


Figure 5. Assembly Layer in TSOP-5

Board reference: TLS-P-001-A-0207-BR

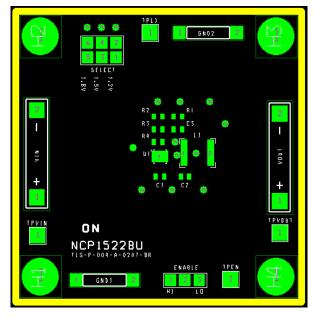


Figure 6. Assembly Layer in UDFN-6

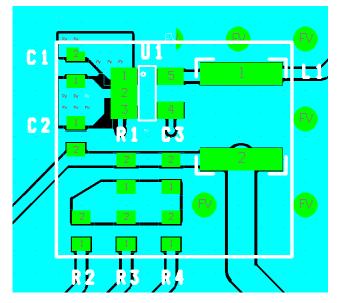


Figure 7. Part Layout in TSOP-5

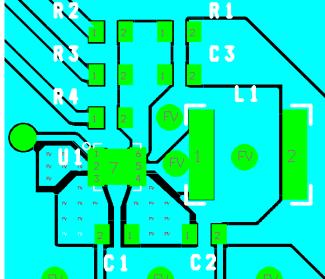


Figure 8. Part Layout in UDFN-6

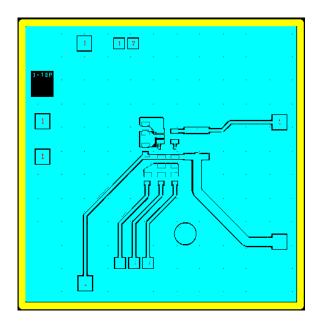


Figure 9. Top Layer Routing in TSOP-5

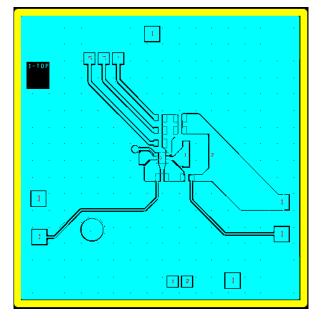


Figure 10. Top Layer Routing in UDFN-6

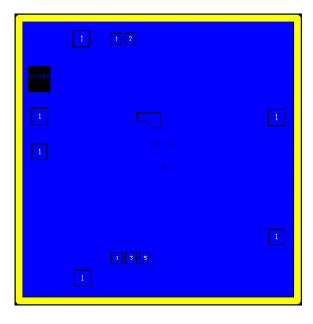


Figure 11. Ground Layer Routing in UDFN-6

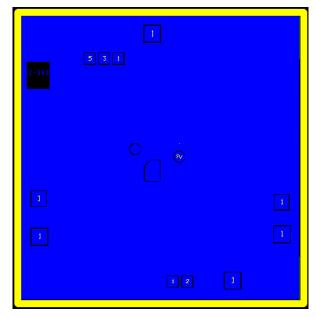


Figure 12. Ground Layer Routing in UDFN-6

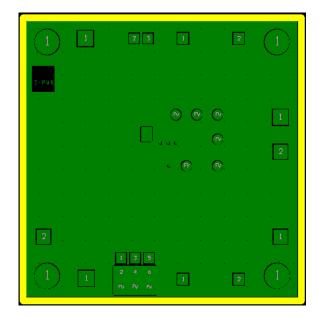


Figure 13. Power Layer Routing in TSOP-5

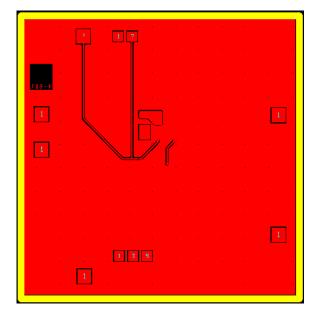


Figure 15. Bottom Layer Routing in TSOP-5

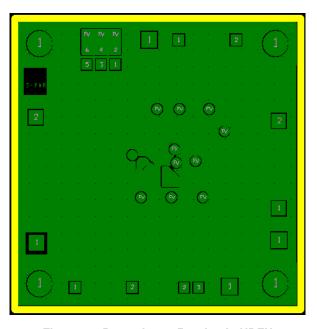


Figure 14. Power Layer Routing in UDFN-6

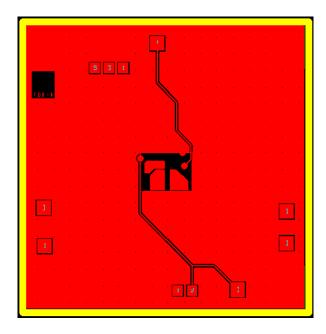


Figure 16. Bottom Layer Routing in UDFN-6

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

The evaluation board/kit (research and development board/kit) (hereinafter the "board") is not a finished product and is as such not available for sale to consumers. The board is only intended for research, development, demonstration and evaluation purposes and should as such only be used in laboratory/development areas by persons with an engineering/technical training and familiar with the risks associated with handling electrical/mechanical components, systems and subsystems. This person assumes full responsibility/liability for proper and safe handling. Any other use, resale or redistribution for any other purpose is strictly prohibited.

The board is delivered "AS IS" and without warranty of any kind including, but not limited to, that the board is production-worthy, that the functions contained in the board will meet your requirements, or that the operation of the board will be uninterrupted or error free. ON Semiconductor expressly disclaims all warranties, express, implied or otherwise, including without limitation, warranties of fitness for a particular purpose and non-infringement of intellectual property rights.

ON Semiconductor reserves the right to make changes without further notice to any board.

You are responsible for determining whether the board will be suitable for your intended use or application or will achieve your intended results. Prior to using or distributing any systems that have been evaluated, designed or tested using the board, you agree to test and validate your design to confirm the functionality for your application. Any technical, applications or design information or advice, quality characterization, reliability data or other services provided by ON Semiconductor shall not constitute any representation or warranty by ON Semiconductor, and no additional obligations or liabilities shall arise from ON Semiconductor having provided such information or services.

The boards are not designed, intended, or authorized for use in life support systems, or any FDA Class 3 medical devices or medical devices with a similar or equivalent classification in a foreign jurisdiction, or any devices intended for implantation in the human body. Should you purchase or use the board for any such unintended or unauthorized application, you shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the board.

This evaluation board/kit does not fall within the scope of the European Union directives regarding electromagnetic compatibility, restricted substances (RoHS), recycling (WEEE), FCC, CE or UL, and may not meet the technical requirements of these or other related directives.

FCC WARNING - This evaluation board/kit is intended for use for engineering development, demonstration, or evaluation purposes only and is not considered by ON Semiconductor to be a finished end product fit for general consumer use. It may generate, use, or radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment may cause interference with radio communications, in which case the user shall be responsible, at its expense, to take whatever measures may be required to correct this interference.

ON Semiconductor does not convey any license under its patent rights nor the rights of others.

LIMITATIONS OF LIABILITY: ON Semiconductor shall not be liable for any special, consequential, incidental, indirect or punitive damages, including, but not limited to the costs of requalification, delay, loss of profits or goodwill, arising out of or in connection with the board, even if ON Semiconductor is advised of the possibility of such damages. In no event shall ON Semiconductor's aggregate liability from any obligation arising out of or in connection with the board, under any theory of liability, exceed the purchase price paid for the board, if any. For more information and documentation, please visit www.onsemi.com

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT

North American Technical Support:

Voice Mail: 1 800-282-9855 Toll Free USA/Canada

Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative