Light is OSRAM

17.05.2021

Dear Customer.

please find attached our OSRAM OS PCN:

OS-PCN-2021-014-A Introduction of next generation IR Thinfilm chip for SYNIOS P2720 SFH 4775S

Important information for your attention:

Please review the **Customer approval form** at the end of the document and provide your feedback to your OSRAM OS sales partner before **01.07.2021**. *)

Your prompt reply will help OSRAM OS to assure a smooth and well executed transition. If OSRAM OS does not hear from your side by the due date, we will assume your (if you are a Distributor: and your customer's) full acceptance to this proposed change and its implementation.

OSRAM OS understands the time requirements your organization needs to approve this PCN. However, if you can provide OSRAM OS an estimated date your organization will approve this PCN, OSRAM OS can use this date to plan continued production to secure your order needs during the transition time you require to review and approve this PCN.

Your attention and response to this matter is highly appreciated.

Please direct your inquiries to your local Sales office.

- *) OSRAM OS aligns with the widely-recognized JEDEC STANDARD "JESD46-C", which stipulates:
 - "Customers should acknowledge receipt of the PCN within 30 days of delivery of the PCN."
 - "Lack of acknowledgement of the PCN within 30 days constitutes acceptance of the change."
 - "After acknowledgement, lack of additional response within the 90 day period constitutes acceptance of the change. An acceptance or concern response should be submitted to the supplier in a timely fashion, (i.e., customer should not wait to the end of the 90 day review period before responding, if the response is known before that time.)"

OS-PCN-2021-014-A Introduction of next generation IR Thinfilm chip for SYNIOS P2720 SFH 4775S

Subject of change:	Introduction of next generation P2720 SFH 4775S	IR Thinfilm chip for SYNIOS
Affected products	SFH 4775S	
Reason for change:	Fulfill market demands for higher brightnessEnsure continuous supplyCapacity increase	
Description of change	Please refer to attached 2_cip_OS-PCN-2021-014-A	
Product identification:	Date code / Laser marking on	device
Time schedule for PCN material	Final qualification report	available
(after implementation of change):	Samples available	yes
or change).	Intended Start of delivery	15.08.2021 ^{*)} *) or earlier if released by customer and upon mutual agreement
Time schedule for Pre-PCN material (prior to implementation	Last time order date (LTO)	**) expected approval date needs to be available at this time. Lead time and LTO quantity shall be mutually agreed between OSRAM OS and customer.
(prior to implementation of change):	Last time delivery date (LTD)	31.10.2021 ****) ***) planned last date for delivery of products of current status

Template revision: 03.03.2015

Assessment:	Datasheet will be updated accordingly
Documentation:	2_cip_OS-PCN-2021-014-A 3_qual_OS-PCN-2021-014-Al

Note:

Pre-PCN material: Products of current status, means before implementation of the changes

as described in the PCN.

PCN material: Products with implementation of the changes as described in the PCN.

Customer approval form

OS-PCN-2021-014-A Introduction of next generation IR Thinfilm chip for SYNIOS P2720 SFH 4775S

Please list product(s) affected in your applicati	on(s):
Please check the appropriate box below:	
Approval: We agree with the proposed change and accept start of the shipment upon availability of PCN material.	O Not relevant: Change is not relevant for products in use.
O Change cannot be accepted:	_ !
 We have objections: 	
 We request following Information: 	
 We request following Samples: 	
o Expected approval date: dd.mm.yyyy	
 Volume requirements for Pre-PCN mater 	rial:
Sender:	
Company:	
Address / Location:	
Signature:	Date:
Please return this approval form to your Sales	partner.

OSRAM Opto Semiconductors GmbH

Head Office:

Leibnizstrasse 4
93055 Regensburg, Germany
Phone +49 941 850-5
Fax +49 941 850-1002
www.osram-os.com

OS-PCN-2021-014-A Introduction of next generation IR Thinfilm chip for SYNIOS P2720 SFH 4775S Customer information package

OS QM CQM | 17.05.2021

Light is OSRAM

OS-PCN-2021-014-A Overview

		Page
1.	Reason for change	03
2.	Description of change	04
3.	Changes in the datasheet	05
4.	Time schedule	10

OS-PCN-2021-014-A Introduction of next generation IR Thinfilm chip

Reason for change

Introduction of latest chip generation to

- > Fulfill market demands for higher brightness
- Ensure continuous supply
- Capacity increase

Affected product

SYNIOS P2720: SFH 4775S

Assessment

The new chip generation is already phased in for other SYNIOS P2720 and OSLON Black Series types as per OS-PCN-2019-015-A.

OS-PCN-2021-014-A Introduction of next generation IR Thinfilm chip

QUALITYFIRST

Description of change

	Current status	New status	
Production location	Regensburg / Germany	Regensburg / Germany	
Chip dimensions	1000μm x 1000μm x 120μm	1000μm x 1000μm x 120μm	
Substrate	Si-carrier	Si-carrier	
Wafer diameter	150mm	150mm	
Chip picture			

Introduction of next generation IR Thinfilm chip

Changes in the datasheet:

Product type	Data sheet version before PCN	Data sheet version after PCN
SFH 4775S	1.3	1.4

Note: After PCN approval and shipment of new material, the new data sheet versions will be valid.

Latest version of data sheet is accessible on OSRAM OS homepage.

Introduction of next generation IR Thinfilm chip

Changes in the datasheet

	Deloie i C	IN .	
Туре	Total radiant flux 1)2)	Total radiant flux 1) typ.	
	$I_{F} = 1000 \text{ mA}; t_{p} = 10 \text{ ms}$ Φ_{e}	$I_{\rm F}$ = 1000 mA; $t_{\rm p}$ = 10 ms $\Phi_{\rm e}$	
SFH 4775S	1000 1600 mW	1,150 mW	

Roforo PCN

Maximum Ratings			
T _A = 25 °C			
Parameter	Symbol		Values
Operating temperature	T _{op}	min.	-40 °C
		max.	100 °C
Storage temperature	T_{stg}	min.	-40 °C
		max.	100 °C
Junction temperature	T_{j}	max.	145 °C
Forward current	I _F	max.	1500 mA
Surge current	I _{FSM}	max.	3 A
$t_p \le 1.5 \text{ ms}; D = 0.005$			
Reverse current 3)	I _R	max.	200 mA
Power consumption	P_{tot}	max.	5800 mW
ESD withstand voltage	V _{ESD}	max.	2 kV
acc. to ANSI/ESDA/JEDEC JS-001 (HBM, Class 2)	200		

Type Total radiant flux ¹⁾²⁾ Total radiant flux ¹⁾ typ. $I_F = 1000 \text{ mA}; t_p = 10 \text{ ms}$ Φ_e $I_F = 1000 \text{ mA}; t_p = 10 \text{ ms}$ Φ_e 1,360 mW

After PCN

Maximum Ratings T _A = 25 °C			
Parameter	Symbol		Values
Operating temperature	T _{op}	min. max.	-40 °C 100 °C
Storage temperature	T_{stg}	min. max.	-40 °C 100 °C
Junction temperature	T _j	max.	145 °C
Forward current	I _F	max.	1500 mA
Surge current testcondition: tbd	I _{FSM}	max.	3 A
Reverse current 3)	I _R	max.	200 mA
Power consumption	P _{tot}	max.	5400 mW
ESD withstand voltage acc. to ANSI/ESDA/JEDEC JS-001 (HBM, Class 2)	$V_{\rm ESD}$	max.	2 kV

Introduction of next generation IR Thinfilm chip

Changes in the datasheet

Before PCN	After PCN
------------	-----------

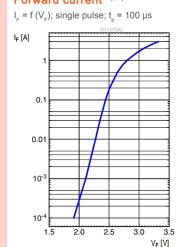
Characteristics			
$I_{_{\rm F}}$ = 1000 mA; $t_{_{\rm D}}$ = 10 ms; $T_{_{\rm A}}$ = 25 °C			
Parameter	Symbol		Values
Peak wavelength	λ_{peak}	typ.	950 nm
Centroid wavelength	$\lambda_{ ext{centroid}}$	typ.	940 nm
Spectral bandwidth at 50% I _{rel,max} (FWHM)	Δλ	typ.	37 nm
Half angle	φ	typ.	60 °
Dimensions of active chip area	L×W	typ.	1 x 1 mm x mm
Rise time (10% / 90%) $I_F = 3 \text{ A}; R_L = 50 \Omega$	t _r	typ.	11 ns
Fall time (10% / 90%) I _F = 3 A; R _L = 50 Ω	t _f	typ.	14 ns
Forward voltage 4)	V_{F}	typ. max.	2.8 \ 3.5 \
Forward voltage $^{4)}$ I _F = 1.5 A; t _p = 100 μ s	V_{F}	typ. max.	2.95 \ 3.75 \
Forward voltage $^{4)}$ I _F = 3 A; t _p = 100 μ s	V _F	typ. max.	3.3 \ 4.6 \
Reverse voltage 3) I _R = 20 mA	V_R	max.	1.2 \
Reverse voltage (ESD device) 3)	V_{RESD}	min.	5 V
Radiant intensity $^{5)}$ I _F = 1000 mA; t_{o} = 10 ms	l _e	typ.	360 mW/s
Radiant intensity ⁵⁾ $I_F = 1.5 \text{ A}; t_D = 100 \mu\text{s}$	l _e	typ.	545 mW/s
Total radiant flux $^{1)}$ I _p = 1.5 A; t _p = 100 μ s	Фе	typ.	1720 mW
Temperature coefficient of voltage	TC _v	typ.	-2 mV / k
Temperature coefficient of brightness	TC,	typ.	-0.3 % / K
Temperature coefficient of wavelength	TC,	typ.	0.3 nm / k
Thermal resistance junction solder point real 6)	$R_{thJSreal}$	max.	9.0 K / W

Characteristics			
$I_F = 1000 \text{ mA}; t_p = 10 \text{ ms}; T_A = 25 ^{\circ}\text{C}$			
Parameter	Symbol		Values
Peak wavelength	$\lambda_{ m peak}$	typ.	950 nm
Centroid wavelength	$\lambda_{ ext{centroid}}$	typ.	940 nm
Spectral bandwidth at 50% I _{rel,max} (FWHM)	Δλ	typ.	37 nm
Half angle	φ	typ.	60 °
Dimensions of active chip area	LxW	typ.	1 x 1 mm x mm
Rise time (10% / 90%) $I_F = 3 A$; $R_L = 50 \Omega$	t _r	typ.	12 ns
Fall time (10% / 90%) $I_F = 3 A; R_L = 50 \Omega$	t _f	typ.	15 ns
Forward voltage 4)	V_{F}	typ. max.	2.9 V 3.4 V
Forward voltage ⁴⁾ I _F = 1.5 A; t _n = 100 µs	V_{F}	typ. max.	3.05 V 3.6 V
Forward voltage ⁴⁾ I _F = 3 A; t _B = 100 µs	V_{F}	typ. max.	3.5 V 4.2 V
Reverse voltage 3) I _R = 20 mA	V_R	max.	1.2 V
Reverse voltage (ESD device) 3)	V_{RESD}	min.	5 V
Radiant intensity 5)	l _e	typ.	420 mW/sr
Radiant intensity $^{5)}$ I _F = 1.5 A; t _p = 100 μ s	l _e	typ.	620 mW/sr
Total radiant flux ¹⁾ $I_F = 1.5 \text{ A}; t_p = 100 \mu \text{s}$	Фе	typ.	2000 mW
Temperature coefficient of voltage	TC _v	typ.	-2 mV / K
Temperature coefficient of brightness	TC _I	typ.	-0.3 % / K
Temperature coefficient of wavelength	TC,	typ.	0.3 nm / K
Thermal resistance junction solder point real ⁶⁾	R _{thJS real}	max.	9.0 K / W

Introduction of next generation IR Thinfilm chip

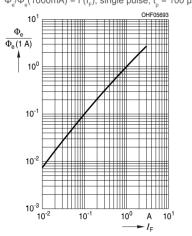
Changes in the datasheet

Before PCN After PCN

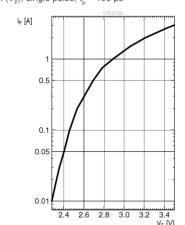

Brightness Groups

Group	Total radiant flux $^{1/2)}$ $I_F = 1000$ mA; $t_p = 10$ ms min. Φ_e	Total radiant flux $^{1)2)}$ I _F = 1000 mA; t_p = 10 ms max. Φ_e
EB2	1000 mW	1120 mW
FA1	1120 mW	1250 mW
FA2	1250 mW	1400 mW
FB1	1400 mW	1600 mW

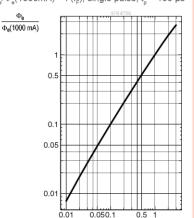
Brightness Groups


	•	
Group	Total radiant flux 1)2)	Total radiant flux 1)2)
	$I_{F} = 1000 \text{ mA}; t_{D} = 10 \text{ ms}$	$I_{F} = 1000 \text{ mA}; t_{D} = 10 \text{ ms}$
	min.	max.
	Фе	Фе
FA1	1120 mW	1250 mW
FA2	1250 mW	1400 mW
FB1	1400 mW	1600 mW

Forward current 7), 8)


Relative Total Radiant Flux 7), 8)

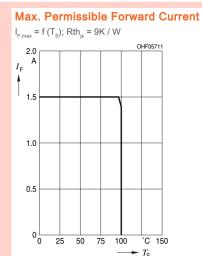
 $\Phi_{o}/\Phi_{o}(1000\text{mA}) = f(I_{E})$; single pulse; $t_{o} = 100 \mu s$

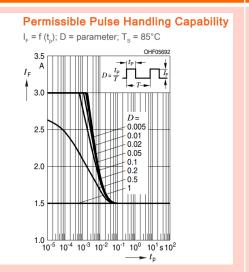

Forward current 7), 8)

 $I_{E} = f(V_{E})$; single pulse; $t_{D} = 100 \mu s$

Relative Total Radiant Flux 7), 8)

 $\Phi_{o}/\Phi_{o}(1000\text{mA}) = f(I_{e})$; single pulse; $t_{o} = 100 \mu s$




Introduction of next generation IR Thinfilm chip

Changes in the datasheet

Derating under verification

Introduction of next generation IR Thinfilm chip

Time schedule for PCN material

(after implementation of change):

Final qualification report

available

Samples available

ves

Intended Start of delivery

15.08.2021*)

*) or earlier if released by customer and upon mutual agreement

Time schedule for Pre-PCN material Last time order date (LTO)

(prior to implementation of change):

31.07.2021**)

**) expected approval date needs to be available at this time. Lead time and LTO quantity shall be mutually agreed between OSRAM OS and customer.

Last time delivery date (LTD)

31.10.2021***)

***) planned last date for delivery of products of current status

Note:

Pre-PCN material: Products of current status, means before implementation of the changes as described in the PCN.

PCN material: Products with implementation of the changes as described in the PCN.

Thank you.

